Ssylka

Объективная оценка качества LLM: от метрик к практике

Выбор правильных метрик для оценки LLM — важная задача, влияющая на качество работы всей системы. Существуют разные типы метрик, от статистических до основанных на нейросетях, но наиболее эффективными являются те, что используют LLM в качестве «судьи» (например, G-Eval). Они лучше учитывают семантику и способны более точно оценить результат.
Объективная оценка качества LLM: от метрик к практике
Изображение носит иллюстративный характер

Метрики RAG (Retrieval-Augmented Generation) необходимы для оценки систем, генерирующих текст с учетом контекста. Важными показателями являются: достоверность (соответствие фактам), релевантность ответа, контекстная точность (ранжирование релевантных узлов), контекстная полнота (покрытие информации из контекста) и общая контекстная релевантность (соответствие запросу). Для их вычисления часто используется метод QAG (Question Answering Generation), который задаёт закрытые вопросы и анализирует ответы.

Метрики для дообучения LLM, такие как оценка галлюцинаций (вымышленных фактов), токсичности (наличие оскорблений) и предвзятости, оценивают качество самой модели. Обнаружение галлюцинаций можно проводить методом SelfCheckGPT, а токсичность и предвзятость можно измерять, используя LLM как «судью» с помощью G-Eval, задавая соответствующие критерии. Предвзятость – это крайне субъективная категория, она может существенно варьироваться в зависимости от географических, геополитических и геосоциальных условий.

Для оценки специфичных задач можно использовать метрику соответствия инструкциям, которая оценивает, насколько точно LLM выполняет указания, или метрику резюмирования, оценивающую точность и полноту сжатого текста. Для конкретных случаев использования подойдут кастомные метрики с помощью G-Eval, где гибко задаются критерии оценки. Выбор конкретных метрик зависит от задач, стоящих перед LLM, и ее архитектуры.


Новое на сайте

16948Почему символ американской свободы был приговорен к уничтожению? 16947Рукотворное убежище для исчезающих амфибий 16946Какую тайну хранит жестокая жизнь и загадочная смерть сестер каменного века? 16945Скрывает ли Плутон экваториальный пояс из гигантских ледяных клинков? 16944Взгляд на зарю вселенной телескопом Джеймса Уэбба 16943От сада чудес до протеина из атмосферы 16942Кратковременный сон наяву: научное объяснение пустоты в мыслях 16941Спутники Starlink создают непреднамеренную угрозу для радиоастрономии 16940Аутентификационная чума: бэкдор Plague год оставался невидимым 16939Фиолетовый страж тайских лесов: редкий краб-принцесса явился миру 16938Хроники мангровых лесов: победители фотоконкурса 2025 года 16937Танцевали ли планеты солнечной системы идеальный вальс? 16936Ай-ай: причудливый лемур, проклятый своим пальцем 16935Как рентгеновское зрение раскрывает самые бурные процессы во вселенной? 16934Уязвимость нулевого дня в SonicWall VPN стала оружием группировки Akira