Ssylka

Скрытая преграда водного расщепления: как молекулярный переворот тормозит будущее водородной энергет

Водное расщепление рассматривается как ключевой путь к созданию экологически чистого водородного топлива и, потенциально, к обеспечению дыхательного кислорода для внеземных миссий, например на Марсе. Однако на практике этот процесс остается энергоемким и неэффективным, поскольку требует значительно больше энергии, чем предсказывается теорией.
Скрытая преграда водного расщепления: как молекулярный переворот тормозит будущее водородной энергет
Изображение носит иллюстративный характер

Исследование группы химиков Северо-Западного университета под руководством Франца Гайгера, Чарльза Моррисона, профессора химии, впервые объяснило эту нестыковку на молекулярном уровне. Оказалось, что перед тем как вода выделяет атомы кислорода, ее молекулы совершают «переворот» — неожиданное и крайне затратное по энергии движение, которое долгое время ускользало от внимания ученых. «Мы показали, что переворот молекул воды — обязательный этап, непосредственно предшествующий выделению кислорода», — отмечает Гайгер.

Команда, в которую также вошли Рейден Спилман (ведущий автор), Эзра Маркер, Алекс Мартинсон (Аргоннская национальная лаборатория), Мавис Боама, Джейкоб Купферберг, Марк Энгельхард, Ятон Чжао и Кевин Россо (Тихоокеанская северо-западная национальная лаборатория), сумела впервые количественно оценить энергетическую цену этого процесса. Опыты показали: если повысить pH воды, то есть сделать ее более щелочной, затраты энергии на переворот молекул существенно снижаются, а эффективность всей реакции возрастает.

Технически водное расщепление состоит из двух полуреакций — получения водорода и образования кислорода (кислород-эволюционной реакции, OER). Проблемным остается именно последний этап, требующий на практике не менее 1,5–1,6 вольт при теоретическом минимуме в 1,23 вольта. Современные катализаторы, такие как иридий, хотя и эффективны, крайне дороги и редки. Ведутся поиски более доступных альтернатив, например на основе никеля и железа, обладающих высокими каталитическими свойствами.

В ходе экспериментов использовался гематит (оксид железа) — недорогой и распространенный минерал, потенциальная основа для солнечных водных фотоанодов. С помощью собственной методики — фазорезолвированной генерации второго гармонического излучения (PR-SHG) — исследователи наблюдали в реальном времени взаимодействие воды с электродом. До приложения напряжения молекулы воды ориентированы хаотично, но при достижении определенного порога электрического поля они резко «переворачиваются», направляя атомы кислорода к поверхности электрода.

Это переворачивание происходит строго перед началом выделения кислорода и является необходимым для передачи электрона с кислорода на электрод. До этого момента отрицательно заряженный электрод притягивает водородные атомы молекулы, блокируя процесс. Как только поле становится достаточно сильным, молекула совершает переворот, и электронный обмен становится возможным. Энергия, необходимая для этого движения, сопоставима с энергией, удерживающей воду в жидком состоянии.

Эксперименты подтвердили: при низком pH (меньше 9) переворот требует столь больших затрат, что почти не происходит, и реакция останавливается. При высоком pH процесс становится гораздо эффективнее: молекулы переворачиваются легче, и водное расщепление идет с меньшими энергозатратами.

Ранее, в марте, лаборатория Гайгера обнаружила аналогичный механизм переворота воды на никелевом электроде — результат опубликован в Science Advances. Это доказывает универсальность явления на разных типах электродов, как металлических, так и полупроводниковых.

Разработка солнечных фотоанодов на основе гематита, способных использовать энергию фотонов, может дополнительно снизить требуемое напряжение и удешевить производство водорода. Исследование ясно показывает, что для эффективного расщепления воды поверхности катализаторов должны проектироваться с расчетом на облегчение переворота молекул воды, что позволит ускорить электронный обмен и приблизить водородную экономику к реальности.

Результаты работы опубликованы в журнале Nature Communications.


Новое на сайте

16950Физический движок в голове: как мозг разделяет твердые предметы и текучие вещества 16949Скрыты ли в нашей днк ключи к лечению ожирения и последствий инсульта? 16948Почему символ американской свободы был приговорен к уничтожению? 16947Рукотворное убежище для исчезающих амфибий 16946Какую тайну хранит жестокая жизнь и загадочная смерть сестер каменного века? 16945Скрывает ли Плутон экваториальный пояс из гигантских ледяных клинков? 16944Взгляд на зарю вселенной телескопом Джеймса Уэбба 16943От сада чудес до протеина из атмосферы 16942Кратковременный сон наяву: научное объяснение пустоты в мыслях 16941Спутники Starlink создают непреднамеренную угрозу для радиоастрономии 16940Аутентификационная чума: бэкдор Plague год оставался невидимым 16939Фиолетовый страж тайских лесов: редкий краб-принцесса явился миру 16938Хроники мангровых лесов: победители фотоконкурса 2025 года 16937Танцевали ли планеты солнечной системы идеальный вальс? 16936Ай-ай: причудливый лемур, проклятый своим пальцем