Ssylka

Сила водородных связей в ограниченной воде: новая эра измерений и прогнозирования

Учёные из Университета Манчестера разработали метод, который впервые позволяет точно измерять силу водородных связей в воде, находящейся в ограниченных пространствах. Эта разработка открывает новые горизонты для медицины, энергетики, моделирования климата, биологии, материаловедения и технологий.
Сила водородных связей в ограниченной воде: новая эра измерений и прогнозирования
Изображение носит иллюстративный характер

Результаты исследования опубликованы в журнале Nature Communications. Новый метод не только предлагает иной взгляд на природу водородных связей, но и позволяет их количественно оценивать — задача, которая до сих пор считалась крайне сложной.

Водородные связи определяют уникальные свойства воды, такие как высокая температура кипения и поверхностное натяжение, а также лежат в основе ключевых биологических процессов: формирования белковых структур, стабильности ДНК. Однако количественно измерить водородные связи, особенно в сложных или ограниченных системах, долгое время не удавалось.

Работой руководили профессор Артём Мищенко, доктор Цян Ян и доктор Цивэй Ван. Они предложили рассматривать водородные связи как электростатическое взаимодействие между диполями и внешним электрическим полем. Такой подход позволяет напрямую рассчитывать силу водородной связи по данным спектроскопии. "Мы переосмыслили водородные связи, чтобы можно было непосредственно рассчитывать их силу, что было невозможно прежде," — отмечает профессор Мищенко.

Модельной системой для экспериментов послужил минерал гипс (CaSO₄·2H₂O), в котором вода заключена между двухмерными слоями. Исследователи воздействовали на эти молекулы внешними электрическими полями и отслеживали их вибрационный отклик с помощью высокоразрешающей спектроскопии. Такой подход позволил достичь беспрецедентной точности в измерении силы водородных связей.

Используемая техника позволяет не только измерять, но и прогнозировать поведение воды в ранее недоступных для анализа ограниченных средах — достаточно провести простое спектроскопическое измерение, что полностью исключает необходимость в сложных компьютерных симуляциях. "Теперь мы можем предсказывать поведение воды в ограниченных пространствах, что раньше требовало длительных вычислений," — подчёркивает доктор Ян.

Открытие обещает революционизировать ряд прикладных областей. В водоочистке это позволит оптимизировать мембранные материалы, повысить эффективность фильтрации и снизить энергозатраты. В фармацевтике новая методика даст возможность прогнозировать связывание воды с молекулами, что ускорит разработку более растворимых и эффективных лекарств. В климатологии — повысить точность моделирования фазовых переходов воды в облаках и атмосфере. В области хранения энергии — создать материалы с заданными свойствами водородных связей, что может улучшить работу аккумуляторов. В биомедицине — разработать имплантируемые сенсоры с повышенной совместимостью и долговечностью за счёт контролируемого взаимодействия с водой на поверхности устройства.

"Мы создали новый фундамент для понимания и управления водородными связями, что позволит разрабатывать материалы и технологии будущего — от катализаторов до мембран," — подчёркивает доктор Ван, первый автор работы.

Разработанный подход закладывает основу для проектирования новых материалов и устройств, чьи свойства определяются физикой водородных связей. Это открывает путь к созданию катализаторов, мембран и других технологий, чья эффективность напрямую связана с тонкой настройкой водородных взаимодействий.


Новое на сайте

16950Физический движок в голове: как мозг разделяет твердые предметы и текучие вещества 16949Скрыты ли в нашей днк ключи к лечению ожирения и последствий инсульта? 16948Почему символ американской свободы был приговорен к уничтожению? 16947Рукотворное убежище для исчезающих амфибий 16946Какую тайну хранит жестокая жизнь и загадочная смерть сестер каменного века? 16945Скрывает ли Плутон экваториальный пояс из гигантских ледяных клинков? 16944Взгляд на зарю вселенной телескопом Джеймса Уэбба 16943От сада чудес до протеина из атмосферы 16942Кратковременный сон наяву: научное объяснение пустоты в мыслях 16941Спутники Starlink создают непреднамеренную угрозу для радиоастрономии 16940Аутентификационная чума: бэкдор Plague год оставался невидимым 16939Фиолетовый страж тайских лесов: редкий краб-принцесса явился миру 16938Хроники мангровых лесов: победители фотоконкурса 2025 года 16937Танцевали ли планеты солнечной системы идеальный вальс? 16936Ай-ай: причудливый лемур, проклятый своим пальцем