Ssylka

Сверхтвердость света

Недавний эксперимент, проведённый учёными Antonio Gianfate (CNR Nanotec) и Davide Nigro (Университет Павии), демонстрирует, что свет способен проявлять свойства сверхтвердого состояния – уникальной квантовой фазы, объединяющей упорядоченность твердого тела и бесфрикционное течение сверхтекучей жидкости.
Сверхтвердость света
Изображение носит иллюстративный характер

Сверхтвердое состояние характеризуется наличием кристаллической структуры, как у обычного твердого вещества, и способностью течь без трения, что типично для сверхтекучести. До настоящего эксперимента подобное состояние наблюдали исключительно в Бозе–Эйнштейновских конденсатах, создаваемых при охлаждении атомного газа до температур, близких к абсолютному нулю.

Идея сверхтвердости была предсказана в 1960-х годах, а её первое экспериментальное подтверждение получено в 2017 году исследователями из MIT и ETH Zurich. Новый опыт значительно расширяет границы понимания экзотических фаз материи, демонстрируя возможность возникновения сверхтвердого состояния в оптической системе.

Эксперимент проводился на фотонной полупроводниковой платформе, изготовленной на основе алюминия, галлия и арсенида. В данной системе фотоны перемещаются и проводятся подобно электронам в металле, что позволяет детально исследовать их коллективное поведение при изменении плотности световых квантов.

Методика эксперимента основывалась на облучении платформы лазерным светом. При достижении определённой пороговой плотности фотоны переходят из некогерентного состояния в единый Бозе–Эйнштейновский конденсат, в котором большинство частиц занимают низкоэнергетическое квантовое состояние.

При дальнейшем увеличении числа фотонов избыток частиц перемещается в соседние квантовые состояния с ненулевыми волновыми числами, оставаясь изоэнергетичными. Этот процесс можно представить по аналогии с театральным залом: центральное место в первом ряду является наиболее предпочтительным, и, в квантовой системе, все фотоны могут занимать его, а при избытке часть рассаживается по бокам, что создаёт пространственную модуляцию плотности – отличительную черту сверхтвердого состояния.

Полученные результаты изложены в публикации «Emerging supersolidity in photonic-crystal polariton condensates», вышедшей в журнале Nature в 2025 году. Авторами исследования стали D. Trypogeorgos, A. Gianfate, M. Landini, D. Nigro, D. Gerace, I. Carusotto, F. Riminucci, K. W. Baldwin, L. N. Pfeiffer, G. I. Martone, M. De Giorgi, D. Ballarini и D. Sanvitto. Как отмечают Gianfate и Nigro, «Это только начало понимания сверхтвердости».


Новое на сайте

18302Можно ли предсказать извержение вулкана по его сейсмическому шёпоту? 18301Как случайное открытие позволило уместить радугу на чипе и решить проблему... 18300Визуальная летопись мира: триумфаторы 1839 Photography Awards 18299Загадка шагающих истуканов Рапа-Нуи 18298Двойное кометное зрелище украшает осеннее небо 18297Двигатель звездного роста: раскрыта тайна запуска протозвездных джетов 18296Нейробиология пробуждения: как мозг переходит от сна к бодрствованию 18295Как сервис для получения SMS-кодов стал оружием для мошенников по всему миру? 18294Сообщения в iOS 26: от ИИ-фонов до групповых опросов 18293Почему для исправления «техношеи» нужно укреплять мышцы, а не растягивать их? 18292Как новорожденная звезда подала сигнал из эпицентра мощнейшего взрыва? 18291Нотный рецепт: как наука превращает музыку в обезболивающее 18290Что превращает кофейное зерно в идеальный напиток? 18289Как пробуждение древних микробов и тайны черных дыр меняют наше будущее? 18288Как 3500-летняя крепость в Синае раскрывает секреты египетской военной мощи?