Ssylka

Революционный прорыв в визуализации спиновых волн открывает путь к компьютерам будущего

В январском выпуске Nature Materials 2025 года описано революционное достижение ученых из Брукхейвенской национальной лаборатории – создание метода визуализации спиновых волн в реальном времени на наноуровне с беспрецедентным временным и пространственным разрешением.
Революционный прорыв в визуализации спиновых волн открывает путь к компьютерам будущего
Изображение носит иллюстративный характер

Группа исследователей под руководством старшего физика Йимея Чжу разработала уникальную технологию, объединяющую модифицированный электронный микроскоп с микроволновой технологией. «Это первый случай наблюдения спиновых волн с помощью электронной микроскопии», – отмечает ведущий автор исследования Чухан Лю, аспирант Университета Стони Брук.

Спинтроника, изучающая как заряд, так и спин электронов, и её подраздел магноника, исследующий коллективное поведение спинов, открывают путь к энергоэффективным вычислениям и квантовым устройствам. Однако до сих пор существовала проблема изучения спиновых волн на наноуровне из-за недостаточной чувствительности и скорости существующих методов микроскопии.

Исследователи создали и стабилизировали особую топологическую магнитную структуру в тонких пленках пермаллоя, используя литографическое структурирование и микроволновую технологию. В пленках наблюдались спиновые вихри, антивихри и магнитные доменные стенки. При подаче радиочастотного электрического сигнала через антенну генерировались, распространялись и интерферировали спиновые волны.

Ключевым техническим достижением стала разработка ультрабыстрого электронного импульсного генератора, созданного совместно с компанией Euclid Techlabs. Устройство получило престижную награду R&D 100 в 2019 году и премию за инновации в микроскопии в 2020 году. По словам физика Спенсера Рейсбика, синхронизация и выравнивание сотен изображений субмикронного масштаба оказались «сложнее, чем поиск иголки в стоге сена».

Новая технология имеет решающее значение для развития нейроморфных вычислений, стремящихся воспроизвести энергоэффективность и параллельную обработку данных, свойственную человеческому мозгу. «Конечная цель – понять и реализовать функциональность, подобную мозгу, в искусственных системах», – поясняет Йимей Чжу.

Метод открывает новые горизонты в электронной микроскопии, позволяя впервые захватывать динамику магнонов на гигагерцовых частотах, что соответствует современным беспроводным технологиям и квантовым кубитам. Это достижение создает мост между фундаментальными исследованиями и практическими промышленными применениями в вычислительной технике будущего.


Новое на сайте

15287Жидкость, восстанавливающая форму: нарушение законов термодинамики 15286Аркадия ведьм: загадка Чарльза годфри Леланда и её влияние на современную магию 15285Кто станет новым героем Звёздных войн в 2027 году? 15283Ануше Ансари | Почему космические исследования важны для Земли 15282Гизем Гумбуская | Синтетический морфогенез: самоконструирующиеся живые архитектуры по... 15281Как предпринимателю остаться хозяином своей судьбы? 15280Люси: путешествие к древним обломкам солнечной системы 15279Роберт Лиллис: извлеченные уроки для экономически эффективных исследований дальнего... 15278Почему супермен до сих пор остаётся символом надежды и морали? 15277Райан Гослинг в роли нового героя «Звёздных войн»: что известно о фильме Star Wars:... 15276Почему экваториальная Гвинея остаётся одной из самых закрытых и жестоких диктатур мира? 15275Почему морские слизни становятся ярче под солнцем? 15274Глен Вейль | Можем ли мы использовать ИИ для построения более справедливого общества? 15273Лириды: где и как увидеть древний звездопад в этом апреле? 15272Сдержит ли налог на однодневных туристов в Венеции наплыв гостей?