Ssylka

Как микролазер размером с чип изменит будущее квантовой криптографии?

Исследовательская группа под руководством Лян Фэна из Университета Пенсильвании совершила прорыв в области квантовых коммуникаций, разработав компактный микролазер для передачи защищенной информации. В отличие от традиционных квантовых битов (кубитов), новое устройство использует кудиты – многомерные квантовые состояния, существенно расширяющие возможности шифрования данных.
Как микролазер размером с чип изменит будущее квантовой криптографии?
Изображение носит иллюстративный характер

Принцип работы нового устройства можно сравнить с бейсбольным питчером, передающим сигналы кетчеру. Подобно тому, как питчер должен скрывать свои намерения от противника, квантовая система должна защищать передаваемую информацию от перехвата. Многомерный подход позволяет добавить дополнительные уровни шифрования, делая сообщение практически неуязвимым.

Созданный микролазер размещается на небольшом лазерном чипе и потребляет значительно меньше энергии по сравнению с существующими установками. «По сути, мы уменьшили гигантскую оптическую установку до размеров маленького лазерного чипа», – поясняет профессор Лян Фэн. Компактность устройства делает его портативным – например, банкир на Уолл-стрит может носить его с собой для получения зашифрованных токенов.

Первый автор исследования, аспирант Йичи Чжан, объясняет принцип работы квантовых ключей на примере банковского логина: система генерирует одноразовые коды, которые теоретически невозможно взломать благодаря высокой специфичности сигнала. Устройство создает «спин-орбитальные фотонные кудиты», манипулируя формой света и его поляризацией.

Исследователи применили нестандартный подход, основанный на неэрмитовой физике, что позволило достичь динамической настройки обмена энергией в системе. Это обеспечивает точный контроль излучаемого света и стабильную передачу квантовых ключей с повышенной эффективностью.

Экспериментальные испытания показали, что микролазер способен излучать четыре различных квантовых состояния с идеальной пространственной и временной однородностью. Система была протестирована на расстояние, эквивалентное более 100 км атмосферной передачи. По расчетам, дальнейшая оптимизация может увеличить дальность действия до 500 км, что сделает возможной квантовую связь между наземными станциями и спутниками.

Для защиты от перехвата команда реализовала метод «приманок» – случайных вариаций интенсивности импульсов, что делает невозможным различение реальных сигналов от ложных. Это существенно повышает безопасность передачи данных и позволяет обнаружить любые попытки прослушивания канала связи.

В перспективе исследователи планируют увеличить размерность системы для кодирования большего объема квантовой информации и провести испытания в реальных условиях волоконно-оптических сетей. Разработка открывает путь к созданию масштабных квантовых сетей с повышенным уровнем безопасности.


Новое на сайте

15287Жидкость, восстанавливающая форму: нарушение законов термодинамики 15286Аркадия ведьм: загадка Чарльза годфри Леланда и её влияние на современную магию 15285Кто станет новым героем Звёздных войн в 2027 году? 15283Ануше Ансари | Почему космические исследования важны для Земли 15282Гизем Гумбуская | Синтетический морфогенез: самоконструирующиеся живые архитектуры по... 15281Как предпринимателю остаться хозяином своей судьбы? 15280Люси: путешествие к древним обломкам солнечной системы 15279Роберт Лиллис: извлеченные уроки для экономически эффективных исследований дальнего... 15278Почему супермен до сих пор остаётся символом надежды и морали? 15277Райан Гослинг в роли нового героя «Звёздных войн»: что известно о фильме Star Wars:... 15276Почему экваториальная Гвинея остаётся одной из самых закрытых и жестоких диктатур мира? 15275Почему морские слизни становятся ярче под солнцем? 15274Глен Вейль | Можем ли мы использовать ИИ для построения более справедливого общества? 15273Лириды: где и как увидеть древний звездопад в этом апреле? 15272Сдержит ли налог на однодневных туристов в Венеции наплыв гостей?