Ssylka

Как ускорить Python с помощью C-расширений: стоит ли игра свеч?

Python, известный своей простотой и удобством, иногда проигрывает в производительности. Для задач, требующих скорости, можно интегрировать C-расширения, используя Python/C API и библиотеку python.h. Это позволяет создавать критически важный к скорости код на C, обходя ограничения GIL (Global Interpreter Lock) и выполняя низкоуровневые операции. C-расширения подходят для интенсивных вычислений, прямого доступа к памяти, работы с C-библиотеками, алгоритмов сжатия и реализации часто используемых узких мест.
Как ускорить Python с помощью C-расширений: стоит ли игра свеч?
Изображение носит иллюстративный характер

Для создания C-расширений требуется настроить окружение. Вместо стандартного venv, удобно использовать Poetry для управления зависимостями и сборки пакетов. Необходимо установить python-dev или python3-dev для доступа к C API. Сборка расширений производится через скрипт , в котором указываются пути к исходным файлам C и необходимые заголовочные файлы. Соблюдение стандартов C11 (или C89/C99) и четкое оформление кода важны для избежания ошибок и совместимости.

Python/C API предоставляет макросы для облегчения работы с Python, такие как PyMODINIT_FUNC для инициализации модулей, Py_ABS, Py_MAX, Py_MIN для математических операций, а также Py_STRINGIFY и PyDoc_STRVAR для работы со строками и документацией. Обработка ошибок в C должна быть явной, с использованием API для генерации исключений Python, включая пользовательские исключения. PyObject – это базовый тип для всех объектов Python. Методы и функции реализуются через PyCFunction, принимающие указатель на объект и кортеж аргументов, а также возвращающие PyObject.

В статье рассматриваются примеры функций на C для вычисления дискриминанта и факториала, а также их Python-оберток, показывая, как PyArg_ParseTuple() разбирает аргументы Python, а Py_BuildValue() создает объекты Python из C-типов. Бенчмаркинг показал, что C-расширения могут увеличить скорость выполнения кода в 5-7 раз по сравнению с чистым Python. Хотя C-расширения повышают производительность, удобство их написания вызывает вопросы. Альтернативой могут служить Go, Nuitka, PyPy и Cython, которые обеспечивают сопоставимую производительность без погружения в низкоуровневое программирование.


Новое на сайте

18604Является ли рекордная скидка на Garmin Instinct 3 Solar лучшим предложением ноября? 18603Могла ли детская смесь ByHeart вызвать национальную вспышку ботулизма? 18602Готовы ли банки доверить агентскому ИИ управление деньгами клиентов? 18601Как сезонные ветры создают миллионы загадочных полос на Марсе? 18600Как тело человека превращается в почву за 90 дней? 18599Как ваш iPhone может заменить паспорт при внутренних перелетах по США? 18598Мозговой шторм: что происходит, когда мозг отключается от усталости 18597Раскрыта асимметричная форма рождения сверхновой 18596Скидки Ninja: как получить идеальную корочку и сэкономить на доставке 18595Почему работа на нескольких работах становится новой нормой? 18594Записная книжка против нейросети: ценность медленного мышления 18593Растущая брешь в магнитном щите земли 18592Каким образом блокчейн-транзакции стали новым инструментом для кражи криптовалюты? 18591Что скрывается за ростом прибыли The Walt Disney Company? 18590Является ли ИИ-архитектура, имитирующая мозг, недостающим звеном на пути к AGI?