Ssylka

Виртуальные сотрудники: архитектура и применение Ии-моделей

Современные системы коммуникаций включают в себя не только общение между людьми, но и взаимодействие с ботами через различные каналы и устройства. Омниканальные роботы, заменяющие операторов, используют синтезированный голос или текст, а также могут быть автоинформаторами. Однако, стандартные реализации роботов, работающих по жёстким сценариям, постепенно уступают место более сложным решениям с применением машинного обучения.
Виртуальные сотрудники: архитектура и применение Ии-моделей
Изображение носит иллюстративный характер

Омниканальные коммуникации декомпозируются по участникам (человек или бот), устройствам, каналам (звонок, чат, API) и формам общения (голос, видео, текст). Модели машинного обучения играют ключевую роль в преобразовании этих форм друг в друга. Требования к ML-моделям зависят от формы коммуникации: минимальная задержка для видео, приемлемая для голоса и более длительная для текста. Также учитываются ресурсоемкость, точность и контекст. Разработчики стремятся создать комфортные и бесшовные преобразования форм через различные каналы, но сталкиваются с ограничениями в плане задержек и ресурсов.

Внедрение больших языковых моделей (LLM) в бизнес-коммуникации осложняется их склонностью к ошибкам. LLM лучше справляются с диалогом, чем с решением конкретных задач. Для оптимальной работы необходима сложная система, которая анализирует входящую информацию, извлекает метаданные, проводит диаризацию, трансформирует аудио в текст, проверяет на спам, анализирует эмоции и преобразует слова в смыслы. Затем, с учетом контекста, происходит выбор действия и передача его в LLM. Векторная СУБД QDRANT помогает быстро находить необходимые скрипты, что повышает производительность.

Развитие виртуальных сотрудников, как результат автоматизации омниканальных роботов, предполагает объединение всех каналов в один и понимание контекста. LLM, используемые после преобразования в текст, могут запускать определенные действия. В будущем, компании смогут создавать таких виртуальных сотрудников для рутинных задач, а пользователи – настраивать персональных ассистентов. Стандартизация API обеспечит взаимодействие роботов между собой, например, при поиске информации по заданным критериям, избегая неэффективных циклов разговора.


Новое на сайте

18607Золотой распад кометы ATLAS C/2025 K1 18606Секретный бренд древнего Рима на стеклянных шедеврах 18605Смогут ли чипсы без искусственных красителей сохранить свой знаменитый вкус? 18604Является ли рекордная скидка на Garmin Instinct 3 Solar лучшим предложением ноября? 18603Могла ли детская смесь ByHeart вызвать национальную вспышку ботулизма? 18602Готовы ли банки доверить агентскому ИИ управление деньгами клиентов? 18601Как сезонные ветры создают миллионы загадочных полос на Марсе? 18600Как тело человека превращается в почву за 90 дней? 18599Как ваш iPhone может заменить паспорт при внутренних перелетах по США? 18598Мозговой шторм: что происходит, когда мозг отключается от усталости 18597Раскрыта асимметричная форма рождения сверхновой 18596Скидки Ninja: как получить идеальную корочку и сэкономить на доставке 18595Почему работа на нескольких работах становится новой нормой? 18594Записная книжка против нейросети: ценность медленного мышления 18593Растущая брешь в магнитном щите земли