Технология Retrieval Augmented Generation (RAG) улучшает работу больших языковых моделей (LLM) за счет доступа к внешним источникам информации. RAG состоит из поисковика, который ищет релевантные данные в базе знаний, и генератора, который использует эти данные для формирования ответов. RAG позволяет объединять разрозненные данные, делая их более доступными для анализа и использования.
Основная проблема, которую решает RAG, – это фрагментация данных внутри компаний. Информация хранится в различных системах, на сайтах SharePoint, в облачных хранилищах и в Excel-таблицах. Это затрудняет извлечение данных, снижает их достоверность и негативно влияет на опыт пользователей. RAG позволяет унифицировать данные, извлекая информацию из неструктурированных источников, таких как PDF, DOCX, XLSX, JPG и CSV.
Настройка RAG может происходить на трех уровнях: на уровне ввода, на уровне модели и на уровне вывода. Настройка на уровне ввода – самый экономичный подход, он оптимизирует запросы к LLM. Настройка на уровне модели включает в себя обучение моделей на данных организации и создание векторных баз данных. Настройка на уровне вывода – самый ресурсоемкий подход, но он обеспечивает точное соответствие организационным целям.
RAG уже применяется в различных сферах: в управлении корпоративными знаниями, в поддержке клиентов, в автоматизации финансового контроля и аудита, а также в рекомендациях по продажам и контенту. Архитектура RAG включает в себя модуль обработки запросов, механизм извлечения информации и модуль вывода, интегрирующий LLM. Векторная база данных является ключевым компонентом RAG, обеспечивая хранение и извлечение векторных вложений.
Изображение носит иллюстративный характер
Основная проблема, которую решает RAG, – это фрагментация данных внутри компаний. Информация хранится в различных системах, на сайтах SharePoint, в облачных хранилищах и в Excel-таблицах. Это затрудняет извлечение данных, снижает их достоверность и негативно влияет на опыт пользователей. RAG позволяет унифицировать данные, извлекая информацию из неструктурированных источников, таких как PDF, DOCX, XLSX, JPG и CSV.
Настройка RAG может происходить на трех уровнях: на уровне ввода, на уровне модели и на уровне вывода. Настройка на уровне ввода – самый экономичный подход, он оптимизирует запросы к LLM. Настройка на уровне модели включает в себя обучение моделей на данных организации и создание векторных баз данных. Настройка на уровне вывода – самый ресурсоемкий подход, но он обеспечивает точное соответствие организационным целям.
RAG уже применяется в различных сферах: в управлении корпоративными знаниями, в поддержке клиентов, в автоматизации финансового контроля и аудита, а также в рекомендациях по продажам и контенту. Архитектура RAG включает в себя модуль обработки запросов, механизм извлечения информации и модуль вывода, интегрирующий LLM. Векторная база данных является ключевым компонентом RAG, обеспечивая хранение и извлечение векторных вложений.