Ssylka

Как RAG трансформирует работу с данными и ИИ?

Технология Retrieval Augmented Generation (RAG) улучшает работу больших языковых моделей (LLM) за счет доступа к внешним источникам информации. RAG состоит из поисковика, который ищет релевантные данные в базе знаний, и генератора, который использует эти данные для формирования ответов. RAG позволяет объединять разрозненные данные, делая их более доступными для анализа и использования.
Как RAG трансформирует работу с данными и ИИ?
Изображение носит иллюстративный характер

Основная проблема, которую решает RAG, – это фрагментация данных внутри компаний. Информация хранится в различных системах, на сайтах SharePoint, в облачных хранилищах и в Excel-таблицах. Это затрудняет извлечение данных, снижает их достоверность и негативно влияет на опыт пользователей. RAG позволяет унифицировать данные, извлекая информацию из неструктурированных источников, таких как PDF, DOCX, XLSX, JPG и CSV.

Настройка RAG может происходить на трех уровнях: на уровне ввода, на уровне модели и на уровне вывода. Настройка на уровне ввода – самый экономичный подход, он оптимизирует запросы к LLM. Настройка на уровне модели включает в себя обучение моделей на данных организации и создание векторных баз данных. Настройка на уровне вывода – самый ресурсоемкий подход, но он обеспечивает точное соответствие организационным целям.

RAG уже применяется в различных сферах: в управлении корпоративными знаниями, в поддержке клиентов, в автоматизации финансового контроля и аудита, а также в рекомендациях по продажам и контенту. Архитектура RAG включает в себя модуль обработки запросов, механизм извлечения информации и модуль вывода, интегрирующий LLM. Векторная база данных является ключевым компонентом RAG, обеспечивая хранение и извлечение векторных вложений.


Новое на сайте

19098Тихая пандемия: четыре ключевых тренда в борьбе с устойчивостью к антибиотикам 19097Где можно будет наблюдать «затмение века» и ближайшие полные солнечные затмения? 19096Может ли высыхание озер ускорить раскол африканской тектонической плиты? 19095Возрождение Google Glass и новая эра AI Glasses: стратегия 2026 года и уроки прошлого 19094Телескоп Джеймс Уэбб раскрыл тайны происхождения жизни в туманности улитка 19093Загадка лунной иллюзии и нейробиологические причины искажения восприятия размера 19092Древние фракийцы почитали собачье мясо как ритуальный деликатес 19091О чем расскажет уникальный инструмент из кости слона возрастом 480 000 лет? 19090Спонтанное формирование личности искусственного интеллекта на основе потребностей и... 19089Почему появление миллиона гуманоидных роботов Optimus угрожает нашей способности понимать... 19088Почему наш мозг намеренно скрывает от нас собственный нос? 19087Почему CISA экстренно внесла критическую уязвимость VMware vCenter Server в каталог... 19086Почему наука окончательно отвергла ледниковую теорию перемещения камней Стоунхенджа? 19085Превращение легального IT-инструментария в бэкдор через фишинговую кампанию Greenvelope 19084CISA обновляет каталог KEV четырьмя критическими уязвимостями с директивой по устранению...