Ssylka

Когда Гессиан не нужен: альтернативный взгляд на оценку неопределенности в машинном обучении

Традиционные методы оценки неопределенности, использующие аппроксимацию Лапласа с вычислением Гессиана, часто оказываются ресурсозатратными и не всегда точными. Альтернативный подход, заменяющий Гессиан на единичную матрицу, может обеспечить более эффективное и точное определение неопределенности модели. Этот метод, получивший название Identity Curvature Laplace Approximation (ICLA), показывает сравнимые и даже лучшие результаты по сравнению с классическими методами аппроксимации Лапласа, а также некоторыми небайесовскими подходами, особенно в задачах обнаружения аномалий (out-of-distribution detection).
Когда Гессиан не нужен: альтернативный взгляд на оценку неопределенности в машинном обучении
Изображение носит иллюстративный характер

Аппроксимация Лапласа, использующая информацию о кривизне параметров модели (Гессиане), для оценки дисперсии распределения, является мощным инструментом в машинном обучении. Однако, вычисление Гессиана, требующее значительных вычислительных ресурсов, становится проблематичным для нейронных сетей с большим количеством параметров. Попытки аппроксимации Гессиана, такие как матрица Фишера или K-FAC, не всегда приводят к удовлетворительным результатам. В то же время, ICLA, использующий простую единичную матрицу вместо Гессиана, оказывается удивительно эффективным.

Исследования показали, что эффективность ICLA напрямую связана со сложностью данных, определяемой как средняя поклассовая косинусная близость кластеров эмбеддингов (MCCS). На датасетах с высокой разделимостью классов традиционная аппроксимация Лапласа работает хуже, чем ICLA. Это связано с тем, что Гессиан имеет спектральное распределение с длинным хвостом, что не соответствует структуре ковариации классов в таких данных. Таким образом, отказ от информации о кривизне (Гессиане) может не только ускорить вычисления, но и повысить точность оценки неопределенности.

В итоге, ICLA, заменяя Гессиан на единичную матрицу, демонстрирует значительное улучшение в оценке неопределенности модели, особенно на сложных данных с высокой разделимостью классов. Этот метод не только упрощает вычисления, но и позволяет создавать более безопасные и надежные системы машинного обучения, способные адекватно оценивать свою неуверенность в сложных и изменчивых условиях.


Новое на сайте

18513Почему подкаст, отвечающий на самые странные вопросы, возвращается в эфир? 18512Загадка маленького тирана: Nanotyrannus признан отдельным видом 18511Как обычная крыса превратилась в воздушного хищника для летучих мышей? 18510Карликовый тиран: новый скелет бросает вызов T. rex 18509Повреждение дренажной системы мозга: новая причина «химиотумана» 18508Brash: уязвимость, обрушивающая браузеры одной вредоносной ссылкой 18507Может ли цветок имитировать запах раненых муравьёв для своего выживания? 18506От уязвимостей к доказанному удару: новая эра кибербезопасности 18505Ловушки искусственного интеллекта: как избежать профессиональной катастрофы 18504Почему в ноябре 2025 года Сатурн временно лишится своих колец? 18503Сможет ли союз музыкального гиганта и ИИ-стартапа изменить будущее музыки? 18502Что делает атаку PhantomRaven на npm практически невидимой для сканеров? 18501Двойной рывок Китая: штурм луны и освоение орбиты 18500Искусственный интеллект принес Samsung рекордную выручку и миллиарды прибыли 18499Искусственный шторм: как нейросети создают фейковую реальность стихийных бедствий