Ssylka

Геокодирование на основе Deep Learning: масштабирование для разных стран

Создание геокодера, способного обрабатывать адреса с ошибками и опечатками, а также адаптируемого к различным языковым и адресным системам, стало возможным благодаря применению deep learning. Традиционный подход, основанный на обратном индексе и множестве правил, оказался недостаточно гибким для масштабирования на разные страны. Нейросетевая архитектура, состоящая из двух стадий (L1 и L2), позволила упростить процесс и достичь более высокого качества.
Геокодирование на основе Deep Learning: масштабирование для разных стран
Изображение носит иллюстративный характер

Первая стадия (L1) отвечает за кодирование запросов и документов в векторы с последующим поиском релевантных документов. Для обучения L1 используется контрактный loss (contrastive loss) на этапе предобучения и поточечный подход (pointwise approach) из contrastive learning на этапе дообучения. Вторая стадия (L2) производит переранжирование результатов L1 с учетом точности соответствия (house precision) запроса и документа, что позволяет нашим партнерам понимать точность геокодирования.

Итеративное улучшение модели происходит за счет использования active learning, доразметки запросов из логов, похожих на ошибочные, и аугментации данных. Активное обучение основано на выборе для разметки пар запрос-документ, вызывающих наибольшие разногласия между ансамблем моделей. Аугментация запросов и документов, включая транслитерацию, позволяет поддерживать другие языки.

Новая архитектура геокодера демонстрирует улучшение точности, скорость адаптации к новым странам, а также упрощение поддержки национальных языков и саджестовых запросов. Развитие идет в направлении создания единой geo-foundation модели для всех стран, оптимизации L2-стадии и использования пользовательского сигнала для дальнейшего улучшения качества. Это доказывает, что использование нейросетей для задач information retrieval может быть более эффективным и простым, чем классические ML-методы.


Новое на сайте

18884Знаете ли вы, что приматы появились до вымирания динозавров, и готовы ли проверить свои... 18883Четыреста колец в туманности эмбрион раскрыли тридцатилетнюю тайну звездной эволюции 18882Телескоп Джеймс Уэбб раскрыл тайны сверхэффективной звездной фабрики стрелец B2 18881Математический анализ истинного количества сквозных отверстий в человеческом теле 18880Почему даже элитные суперраспознаватели проваливают тесты на выявление дипфейков без... 18879Шесть легендарных древних городов и столиц империй, местоположение которых до сих пор... 18878Обзор самых необычных медицинских диагнозов и клинических случаев 2025 года 18877Критическая уязвимость CVE-2025-14847 в MongoDB открывает удаленный доступ к памяти... 18876Научное обоснование классификации солнца как желтого карлика класса G2V 18875Как безграничная преданность горным гориллам привела Дайан Фосси к жестокой гибели? 18874Новый родственник спинозавра из Таиланда меняет представления об эволюции хищников Азии 18873Как новая электрохимическая технология позволяет удвоить добычу водорода и снизить... 18872Могут ли ледяные гиганты Уран и Нептун на самом деле оказаться каменными? 18871Внедрение вредоносного кода в расширение Trust Wallet привело к хищению 7 миллионов... 18870Проверка клинического мышления на основе редких медицинских случаев 2025 года