Ssylka

Геокодирование на основе Deep Learning: масштабирование для разных стран

Создание геокодера, способного обрабатывать адреса с ошибками и опечатками, а также адаптируемого к различным языковым и адресным системам, стало возможным благодаря применению deep learning. Традиционный подход, основанный на обратном индексе и множестве правил, оказался недостаточно гибким для масштабирования на разные страны. Нейросетевая архитектура, состоящая из двух стадий (L1 и L2), позволила упростить процесс и достичь более высокого качества.
Геокодирование на основе Deep Learning: масштабирование для разных стран
Изображение носит иллюстративный характер

Первая стадия (L1) отвечает за кодирование запросов и документов в векторы с последующим поиском релевантных документов. Для обучения L1 используется контрактный loss (contrastive loss) на этапе предобучения и поточечный подход (pointwise approach) из contrastive learning на этапе дообучения. Вторая стадия (L2) производит переранжирование результатов L1 с учетом точности соответствия (house precision) запроса и документа, что позволяет нашим партнерам понимать точность геокодирования.

Итеративное улучшение модели происходит за счет использования active learning, доразметки запросов из логов, похожих на ошибочные, и аугментации данных. Активное обучение основано на выборе для разметки пар запрос-документ, вызывающих наибольшие разногласия между ансамблем моделей. Аугментация запросов и документов, включая транслитерацию, позволяет поддерживать другие языки.

Новая архитектура геокодера демонстрирует улучшение точности, скорость адаптации к новым странам, а также упрощение поддержки национальных языков и саджестовых запросов. Развитие идет в направлении создания единой geo-foundation модели для всех стран, оптимизации L2-стадии и использования пользовательского сигнала для дальнейшего улучшения качества. Это доказывает, что использование нейросетей для задач information retrieval может быть более эффективным и простым, чем классические ML-методы.


Новое на сайте

18590Является ли ИИ-архитектура, имитирующая мозг, недостающим звеном на пути к AGI? 18589Как Operation Endgame нанесла сокрушительный удар по глобальной киберпреступности? 18588Кибервойна на скорости машин: почему защита должна стать автоматической к 2026 году 18587Как одна ошибка в коде открыла для хакеров 54 000 файрволов WatchGuard? 18586Криптовалютный червь: как десятки тысяч фейковых пакетов наводнили npm 18585Портативный звук JBL по рекордно низкой цене 18584Воин-крокодил триаса: находка в Бразилии связала континенты 18583Опиум как повседневность древнего Египта 18582Двойной удар по лекарственно-устойчивой малярии 18581Почему взрыв массивной звезды асимметричен в первые мгновения? 18580Почему самые удобные для поиска жизни звезды оказались наиболее враждебными? 18579Смертоносные вспышки красных карликов угрожают обитаемым мирам 18578Почему самый активный подводный вулкан тихого океана заставил ученых пересмотреть дату... 18577Вспышка на солнце сорвала запуск ракеты New Glenn к Марсу 18576Как фишинг-платформа Lighthouse заработала миллиард долларов и почему Google подала на...