Углубленный RAG: графы знаний для точного поиска информации

Традиционный подход Retrieval Augmented Generation (RAG) с векторными базами данных эффективен, но ограничен в решении сложных запросов, требующих многоаспектного рассуждения или объединения разрозненных данных. GraphRAG преодолевает эти ограничения, интегрируя графы знаний (KG) в процесс извлечения и генерации. В начале текстовые фрагменты анализируются LLM на предмет сущностей, связей и утверждений, образуя начальный граф знаний. Далее применяется иерархическая кластеризация для выделения сообществ – групп плотно связанных сущностей. Для каждого сообщества создаются краткие сводки, включающие ключевые сущности, их отношения и утверждения.
Углубленный RAG: графы знаний для точного поиска информации
Изображение носит иллюстративный характер

При обработке запросов GraphRAG использует глобальный и локальный поиск. Глобальный поиск, подходящий для комплексных вопросов, анализирует сводки сообществ, ранжируя и фильтруя промежуточные ответы для формирования окончательного ответа. Локальный поиск, применяемый к запросам о конкретных сущностях, идентифицирует семантически связанные сущности в графе знаний. Извлеченные фрагменты текста сопоставляются с сущностями, их отношениями и ковариатами. Таким образом, контекст для LLM обогащается не только семантическим сходством текста, но и структурированными знаниями о связях между сущностями.

Приведенный в статье пример с набором данных VIINA демонстрирует преимущество GraphRAG над базовым RAG в вопросах, требующих агрегации информации. В то время как базовый RAG извлекал несвязный текст, GraphRAG выдал релевантный ответ, определяя основные темы и ссылаясь на исходный материал. Также использование векторной базы данных Milvus позволяет хранить эмбеддинги описаний сущностей для быстрого и точного локального поиска. Этот подход сочетает структурированные данные из графа знаний с неструктурированными данными из документов.

GraphRAG также имеет возможность генерировать вопросы на основе исторических запросов. Это позволяет использовать его в чат-ботах. Система анализирует предыдущие запросы и контекст, генерируя вопросы, связанные с определенными сущностями. Такая способность к генерации вопросов делает GraphRAG более динамичным и интерактивным. Практическая реализация GraphRAG с Milvus показывает, что его можно легко интегрировать в существующие рабочие процессы, предоставляя мощный инструмент для работы со сложными данными.


Новое на сайте

19167Севернокорейская хакерская группировка Lazarus маскирует вредоносный код под тестовые... 19166Государственные хакеры используют Google Gemini для кибершпионажа и клонирования моделей... 19165Можно ли построить мировую сверхдержаву на чашках чая и фунтах сахара? 19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии?
Ссылка