Ssylka

Можно ли запустить превращение пропана в пропилен практически при комнатной температуре?

Промышленная дегидрогенизация пропана (PDH) всегда считалась крайне энергоемким процессом: для эффективного превращения пропана в пропилен требуются температуры выше 600°C. Такие высокие температуры вызывают быстрый износ катализаторов, их спекание и образование кокса, что осложняет эксплуатацию и увеличивает стоимость. Возможность проведения PDH при низких температурах долгое время оставалась недостижимой целью для катализа.

Недавнее исследование, опубликованное в журнале Nature Chemistry группой учёных под руководством профессоров Чжан Тао и Ван Айцин (Институт химической физики Далянь, Китайская академия наук) при участии профессора Гао И (Шанхайский институт перспективных исследований, КАН), продемонстрировало принципиально новый подход к дегидрогенизации пропана. Учёные разработали реакцию, катализируемую водой, с использованием катализатора на основе одиночных атомов меди (Cu1/TiO2).

Ключевой инновацией стало совмещение фототермического катализа и уникального катализатора — одиночные атомы меди, нанесённые на диоксид титана. Реакция проходит в атмосфере водяного пара при температуре 50–80°C, то есть почти при комнатных условиях. В качестве реактора использовался проточный фиксированный слой, при этом максимальная скорость реакции достигла 1201 мкмоль/(г катализатора·ч), что сопоставимо с традиционными высокотемпературными процессами.

Механизм процесса радикально отличается от классической дегидрогенизации. Одиночные атомы меди на поверхности TiO2 под действием света инициируют фотокаталитическое расщепление воды с образованием водорода и гидроксильных радикалов. Гидроксильные радикалы адсорбируются на катализаторе и отрывают атом водорода от молекулы пропана, превращая его в пропилен, а затем вновь восстанавливаясь в воду. При этом вода выступает истинным катализатором и не расходуется по ходу реакции. Для функционирования процесса необходимы сразу три компонента: одиночные атомы меди, водяной пар и свет.

Учёные также доказали универсальность метода: аналогичный подход применим для дегидрогенизации других лёгких алканов, таких как этан и бутан. Важно, что реакция может быть непосредственно запущена под действием солнечного света, без дополнительного нагрева, используя тот же катализатор Cu1/TiO2.

Такой подход способен стать основой для перехода от традиционных энергоёмких процессов к новым солнечно-энергетическим технологиям химического производства. Возможность проведения ранее высокотемпературных реакций при помощи солнечной энергии — это снижение затрат и уменьшение выбросов и расширение возможностей химической промышленности.

Профессор Лю Сяоян, один из руководителей работы, подчёркивает: «Наше исследование не только открывает новый путь для дегидрогенизации пропана, но и закладывает фундамент для проведения высокотемпературных реакций, управляемых солнечной энергией».


Новое на сайте

15287Жидкость, восстанавливающая форму: нарушение законов термодинамики 15286Аркадия ведьм: загадка Чарльза годфри Леланда и её влияние на современную магию 15285Кто станет новым героем Звёздных войн в 2027 году? 15283Ануше Ансари | Почему космические исследования важны для Земли 15282Гизем Гумбуская | Синтетический морфогенез: самоконструирующиеся живые архитектуры по... 15281Как предпринимателю остаться хозяином своей судьбы? 15280Люси: путешествие к древним обломкам солнечной системы 15279Роберт Лиллис: извлеченные уроки для экономически эффективных исследований дальнего... 15278Почему супермен до сих пор остаётся символом надежды и морали? 15277Райан Гослинг в роли нового героя «Звёздных войн»: что известно о фильме Star Wars:... 15276Почему экваториальная Гвинея остаётся одной из самых закрытых и жестоких диктатур мира? 15275Почему морские слизни становятся ярче под солнцем? 15274Глен Вейль | Можем ли мы использовать ИИ для построения более справедливого общества? 15273Лириды: где и как увидеть древний звездопад в этом апреле? 15272Сдержит ли налог на однодневных туристов в Венеции наплыв гостей?