Промышленная дегидрогенизация пропана (PDH) всегда считалась крайне энергоемким процессом: для эффективного превращения пропана в пропилен требуются температуры выше 600°C. Такие высокие температуры вызывают быстрый износ катализаторов, их спекание и образование кокса, что осложняет эксплуатацию и увеличивает стоимость. Возможность проведения PDH при низких температурах долгое время оставалась недостижимой целью для катализа.
Недавнее исследование, опубликованное в журнале Nature Chemistry группой учёных под руководством профессоров Чжан Тао и Ван Айцин (Институт химической физики Далянь, Китайская академия наук) при участии профессора Гао И (Шанхайский институт перспективных исследований, КАН), продемонстрировало принципиально новый подход к дегидрогенизации пропана. Учёные разработали реакцию, катализируемую водой, с использованием катализатора на основе одиночных атомов меди (Cu1/TiO2).
Ключевой инновацией стало совмещение фототермического катализа и уникального катализатора — одиночные атомы меди, нанесённые на диоксид титана. Реакция проходит в атмосфере водяного пара при температуре 50–80°C, то есть почти при комнатных условиях. В качестве реактора использовался проточный фиксированный слой, при этом максимальная скорость реакции достигла 1201 мкмоль/(г катализатора·ч), что сопоставимо с традиционными высокотемпературными процессами.
Механизм процесса радикально отличается от классической дегидрогенизации. Одиночные атомы меди на поверхности TiO2 под действием света инициируют фотокаталитическое расщепление воды с образованием водорода и гидроксильных радикалов. Гидроксильные радикалы адсорбируются на катализаторе и отрывают атом водорода от молекулы пропана, превращая его в пропилен, а затем вновь восстанавливаясь в воду. При этом вода выступает истинным катализатором и не расходуется по ходу реакции. Для функционирования процесса необходимы сразу три компонента: одиночные атомы меди, водяной пар и свет.
Учёные также доказали универсальность метода: аналогичный подход применим для дегидрогенизации других лёгких алканов, таких как этан и бутан. Важно, что реакция может быть непосредственно запущена под действием солнечного света, без дополнительного нагрева, используя тот же катализатор Cu1/TiO2.
Такой подход способен стать основой для перехода от традиционных энергоёмких процессов к новым солнечно-энергетическим технологиям химического производства. Возможность проведения ранее высокотемпературных реакций при помощи солнечной энергии — это снижение затрат и уменьшение выбросов и расширение возможностей химической промышленности.
Профессор Лю Сяоян, один из руководителей работы, подчёркивает: «Наше исследование не только открывает новый путь для дегидрогенизации пропана, но и закладывает фундамент для проведения высокотемпературных реакций, управляемых солнечной энергией».
Недавнее исследование, опубликованное в журнале Nature Chemistry группой учёных под руководством профессоров Чжан Тао и Ван Айцин (Институт химической физики Далянь, Китайская академия наук) при участии профессора Гао И (Шанхайский институт перспективных исследований, КАН), продемонстрировало принципиально новый подход к дегидрогенизации пропана. Учёные разработали реакцию, катализируемую водой, с использованием катализатора на основе одиночных атомов меди (Cu1/TiO2).
Ключевой инновацией стало совмещение фототермического катализа и уникального катализатора — одиночные атомы меди, нанесённые на диоксид титана. Реакция проходит в атмосфере водяного пара при температуре 50–80°C, то есть почти при комнатных условиях. В качестве реактора использовался проточный фиксированный слой, при этом максимальная скорость реакции достигла 1201 мкмоль/(г катализатора·ч), что сопоставимо с традиционными высокотемпературными процессами.
Механизм процесса радикально отличается от классической дегидрогенизации. Одиночные атомы меди на поверхности TiO2 под действием света инициируют фотокаталитическое расщепление воды с образованием водорода и гидроксильных радикалов. Гидроксильные радикалы адсорбируются на катализаторе и отрывают атом водорода от молекулы пропана, превращая его в пропилен, а затем вновь восстанавливаясь в воду. При этом вода выступает истинным катализатором и не расходуется по ходу реакции. Для функционирования процесса необходимы сразу три компонента: одиночные атомы меди, водяной пар и свет.
Учёные также доказали универсальность метода: аналогичный подход применим для дегидрогенизации других лёгких алканов, таких как этан и бутан. Важно, что реакция может быть непосредственно запущена под действием солнечного света, без дополнительного нагрева, используя тот же катализатор Cu1/TiO2.
Такой подход способен стать основой для перехода от традиционных энергоёмких процессов к новым солнечно-энергетическим технологиям химического производства. Возможность проведения ранее высокотемпературных реакций при помощи солнечной энергии — это снижение затрат и уменьшение выбросов и расширение возможностей химической промышленности.
Профессор Лю Сяоян, один из руководителей работы, подчёркивает: «Наше исследование не только открывает новый путь для дегидрогенизации пропана, но и закладывает фундамент для проведения высокотемпературных реакций, управляемых солнечной энергией».