Ssylka

Как управлять "горячими дырками" для революции в преобразовании света в энергию?

Корейские ученые совершили прорыв в области плазмонной фотоэлектрохимии, разработав метод, позволяющий значительно продлить время жизни плазмонных «горячих дырок» и усилить их поток. Это открытие, опубликованное в престижном журнале Science Advances (2025), приближает коммерциализацию высокоэффективных технологий преобразования света в энергию нового поколения.
Как управлять "горячими дырками" для революции в преобразовании света в энергию?
Изображение носит иллюстративный характер

Исследовательская группа под руководством заслуженного профессора Чон Ён Парка из Департамента химии Корейского института передовых технологий (KAIST) в сотрудничестве с профессором Мунсан Ли из Департамента материаловедения и инженерии Университета Инха разработала инновационный подход к решению одной из ключевых проблем плазмоники.

Плазмонные «горячие носители» генерируются при взаимодействии света с металлическими наноструктурами. Особенно важны «горячие дырки», которые могут значительно улучшить фотоэлектрохимические реакции. Однако до сих пор главным препятствием было то, что эти «горячие дырки» обычно термически рассеиваются в течение пикосекунд (триллионных долей секунды), что ограничивало их практическое применение.

Для решения этой проблемы ученые разработали специальную нанодиодную структуру, используя металлическую наносетку, размещенную на специализированной полупроводниковой подложке из нитрида галлия p-типа. Такая конструкция значительно облегчает извлечение «горячих дырок» на поверхности материала.

Процесс изготовления этой структуры включал несколько этапов: сначала монослой полистироловых нанобусин размещался на подложке из нитрида галлия (p-GaN), затем полистироловые нанобусины протравливались для формирования шаблона наносетки. После этого наносился золотой нанослой толщиной 20 нм, а протравленные полистироловые нанобусины удалялись. В результате получалась золотая наносетчатая структура на подложке из GaN.

Результаты исследования показали, что поток «горячих дырок» был усилен примерно в два раза в подложках из нитрида галлия, ориентированных в направлении извлечения «горячих дырок». Золотая наносетка демонстрировала сильное поглощение света в видимом диапазоне благодаря эффекту плазмонного резонанса.

Для анализа потока «горячих дырок» в реальном времени на наномасштабном уровне исследователи использовали систему картирования фототока на основе фотопроводящей атомно-силовой микроскопии (pc-AFM). Они обнаружили, что активация «горячих дырок» была наиболее сильной в «горячих точках», где свет концентрировался на золотой наносетке. Кроме того, модификация направления роста подложки из нитрида галлия позволила расширить активацию «горячих дырок» за пределы этих «горячих точек».

Это исследование открывает эффективный метод преобразования света в электрическую и химическую энергию. Ожидается, что данная технология значительно продвинет разработку солнечных элементов нового поколения, фотокатализаторов, технологий производства водорода и ультраминиатюрных оптоэлектронных устройств, включая оптические сенсоры и наномасштабные полупроводниковые компоненты.

Профессор Парк отметил: «Наша технология позволяет эффективно использовать энергию света, которая ранее терялась из-за быстрого рассеивания 'горячих дырок'. Это открывает новые горизонты для создания высокоэффективных устройств преобразования энергии».

Результаты исследования подтверждают, что направленное управление плазмонными «горячими дырками» может стать ключевым фактором в развитии устойчивых энергетических технологий будущего, обеспечивая более эффективное использование солнечного света и уменьшая зависимость от ископаемых видов топлива.


Новое на сайте

15767Легендарный пилотный эпизод "Томас и друзья" впервые увидит свет спустя 40 лет 15766Как Google использует искусственный интеллект для защиты от мошенничества? 15765Угроза лесных пожаров в северной Ирландии: повышенный уровень опасности на выходных 15764Как китайские хакеры используют критическую уязвимость SAP для массовых кибератак? 15763Как проходит мировой чемпионат по аэротрубному спорту? 15762Живая изгородь: экологичная альтернатива традиционным ограждениям 15761От рыночного торговца до аристократа: Джеймс Бай сменил Мартина Фаулера на мистера дарси 15760Как генетическая мутация SIK3-N783Y позволяет людям полноценно функционировать всего на 4... 15759Масштабная криптовалютная афера: более 38 000 поддоменов FreeDrain охотятся за кошельками... 15758Автомобиль форд 1940-х годов обнаружен на затонувшем американском авианосце времен второй... 15757Как растения научились имитировать запах смерти для привлечения опылителей? 15756Эволюционный трюк: как растения научились пахнуть гниющей плотью 15755Как хакеры используют уязвимости SonicWall SMA 100 для полного захвата устройств? 15754Воздушная охота на инвазивных баранов: Техас готовит новый закон 15753Почему рак у людей до 50 лет становится всё более распространённым явлением?