Прорыв в квантовой физике: обнаружена конденсация Бозе-Эйнштейна двухмагнонных состояний

В мире квантовой физики совершено значительное открытие — впервые в истории науки учёные наблюдали Бозе-Эйнштейновскую конденсацию (БЭК) двухмагнонных связанных состояний в магнитном материале. Это революционное достижение, опубликованное в престижном научном журнале Nature Materials, расширяет наше понимание экзотических квантовых состояний материи.
Прорыв в квантовой физике: обнаружена конденсация Бозе-Эйнштейна двухмагнонных состояний
Изображение носит иллюстративный характер

Исследование проводилось на многочастотном высокополевом спектрометре электронного спинового резонанса в Центре стационарных сильных магнитных полей (SHMFF) Хэфэйского института физических наук Китайской академии наук. В проекте участвовала международная команда ученых из Южного университета науки и технологий, Чжэцзянского университета, Народного университета Китая и Австралийской организации ядерной науки и технологий.

Бозе-Эйнштейновская конденсация представляет собой уникальное квантовое явление, при котором частицы-бозоны при сверхнизких температурах конденсируются в единое коллективное состояние. Ранее это явление наблюдалось в холодных атомах, но никогда прежде не было зафиксировано в магнитных системах. В данном случае речь идет о магнонах — квантах спиновых возбуждений, которые формируют пары и затем конденсируются.

Для исследования ученые выбрали квантовый магнитный материал Na₂BaNi(PO₄)₂, обладающий уникальной треугольной решеточной структурой. Этот материал представляет собой идеальную платформу для изучения фрустрированного квантового магнетизма — явления, при котором геометрическое расположение атомов препятствует одновременному удовлетворению всех магнитных взаимодействий.

Методология исследования включала использование оборудования SHMFF для обнаружения слабых сигналов двухмагнонных связанных состояний. Дополнительно применялись методы низкотемпературной термодинамики, нейтронного рассеяния и ядерного магнитного резонанса, что позволило получить комплексное представление о наблюдаемом явлении.

Важно отметить, что обнаруженное явление принципиально отличается от обычной сверхпроводимости, которая связана с спариванием фермионов. В данном случае речь идет об уникальной форме спаривания магнонов, приводящей к квантовому фазовому переходу. Это открытие предоставляет новые представления о экзотических квантовых состояниях материи.

Значимость этого научного прорыва выходит за рамки фундаментальной физики. Он открывает новые пути для исследования неизвестных ранее фаз материи, которые потенциально могут найти применение в передовых технологиях будущего, от квантовых вычислений до новых типов электроники и магнитных устройств хранения данных.


Новое на сайте

19167Севернокорейская хакерская группировка Lazarus маскирует вредоносный код под тестовые... 19166Государственные хакеры используют Google Gemini для кибершпионажа и клонирования моделей... 19165Можно ли построить мировую сверхдержаву на чашках чая и фунтах сахара? 19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии?
Ссылка