Ssylka

Прорыв в квантовой физике: обнаружена конденсация Бозе-Эйнштейна двухмагнонных состояний

В мире квантовой физики совершено значительное открытие — впервые в истории науки учёные наблюдали Бозе-Эйнштейновскую конденсацию (БЭК) двухмагнонных связанных состояний в магнитном материале. Это революционное достижение, опубликованное в престижном научном журнале Nature Materials, расширяет наше понимание экзотических квантовых состояний материи.
Прорыв в квантовой физике: обнаружена конденсация Бозе-Эйнштейна двухмагнонных состояний
Изображение носит иллюстративный характер

Исследование проводилось на многочастотном высокополевом спектрометре электронного спинового резонанса в Центре стационарных сильных магнитных полей (SHMFF) Хэфэйского института физических наук Китайской академии наук. В проекте участвовала международная команда ученых из Южного университета науки и технологий, Чжэцзянского университета, Народного университета Китая и Австралийской организации ядерной науки и технологий.

Бозе-Эйнштейновская конденсация представляет собой уникальное квантовое явление, при котором частицы-бозоны при сверхнизких температурах конденсируются в единое коллективное состояние. Ранее это явление наблюдалось в холодных атомах, но никогда прежде не было зафиксировано в магнитных системах. В данном случае речь идет о магнонах — квантах спиновых возбуждений, которые формируют пары и затем конденсируются.

Для исследования ученые выбрали квантовый магнитный материал Na₂BaNi(PO₄)₂, обладающий уникальной треугольной решеточной структурой. Этот материал представляет собой идеальную платформу для изучения фрустрированного квантового магнетизма — явления, при котором геометрическое расположение атомов препятствует одновременному удовлетворению всех магнитных взаимодействий.

Методология исследования включала использование оборудования SHMFF для обнаружения слабых сигналов двухмагнонных связанных состояний. Дополнительно применялись методы низкотемпературной термодинамики, нейтронного рассеяния и ядерного магнитного резонанса, что позволило получить комплексное представление о наблюдаемом явлении.

Важно отметить, что обнаруженное явление принципиально отличается от обычной сверхпроводимости, которая связана с спариванием фермионов. В данном случае речь идет об уникальной форме спаривания магнонов, приводящей к квантовому фазовому переходу. Это открытие предоставляет новые представления о экзотических квантовых состояниях материи.

Значимость этого научного прорыва выходит за рамки фундаментальной физики. Он открывает новые пути для исследования неизвестных ранее фаз материи, которые потенциально могут найти применение в передовых технологиях будущего, от квантовых вычислений до новых типов электроники и магнитных устройств хранения данных.


Новое на сайте

15800Историческое событие для фанатов: "доктор кто" впервые высадится в Лагосе 15799Где наблюдать за весенней миграцией птиц в Йоркшире и Линкольншире? 15798Сергей Эгельман | Семинар премии Норма Харди 2024 15797Как Google заплатит Техасу $1,4 млрд за сбор данных без разрешения? 15796Как найти любой файл на вашем смартфоне? 15795За кулисами производства наушников дороже элитного автомобиля 15794Воссоздание парфенона 432 года до н.э.: цифровое путешествие в античность 15793Какой электрический велосипед выбрать для ежедневных поездок на работу в 2025 году? 15792Как домашний тест на рак шейки матки может изменить женское здравоохранение? 15790Сколько лет древним деревянным копьям из Шёнингена: новый взгляд на находку? 15789Языковая революция: шимпанзе используют сложные языковые конструкции подобно людям 15788Зеленые защитники земли: удивительный мир растений 15787Северокорейские хакеры совершенствуют вредоносное по OtterCookie для кражи криптовалютных... 15786FDA расширяет палитру натуральных пищевых красителей