Ssylka

Новый метод генерации электричества с помощью пластиковых микрошариков

Международная группа ученых совершила прорыв в области альтернативной энергетики, разработав инновационный способ получения электричества с использованием миниатюрных пластиковых шариков. Метод основан на явлении трибоэлектрификации – процессе, схожем со статическим электричеством, которое возникает при трении материалов.
Новый метод генерации электричества с помощью пластиковых микрошариков
Изображение носит иллюстративный характер

Исследование показало, что когда пластиковые микрошарики располагаются близко друг к другу и приводятся в контакт, они генерируют значительно больше электричества, чем при использовании традиционных методов. Этот процесс реализуется в устройствах, известных как трибоэлектрические наногенераторы (TENG). При соприкосновении поверхностей с плотно упакованными шариками происходит перераспределение зарядов – одни шарики приобретают положительный заряд, другие – отрицательный, что обеспечивает более эффективную передачу заряда и, как следствие, большую выработку электроэнергии.

Размер и материал шариков играют ключевую роль в эффективности данного процесса. Исследователи обнаружили, что более крупные шарики склонны приобретать отрицательный заряд, в то время как мелкие чаще становятся положительно заряженными. Особенно впечатляющие результаты показали шарики из меламин-формальдегида (MF). Этот материал обладает низкой эластичностью, что делает его более эффективным для удержания и передачи электрического заряда.

«Использование микрошариков открывает новые возможности для создания более эффективных трибоэлектрических наногенераторов», – отмечает ведущий автор исследования, доктор Игнаас Джимидар из Брюссельского свободного университета (VUB).

Разработанная технология имеет ряд существенных преимуществ. Во-первых, микрошарики представляют собой экономически выгодную альтернативу дорогостоящим технологиям TENG. Во-вторых, процесс сухого изготовления является более экологичным, поскольку исключает использование растворителей. В-третьих, данная технология может обеспечить энергией различные устройства без необходимости использования батарей или подключения к электросети.

Потенциальные области применения этой технологии весьма разнообразны: от умной одежды и носимых устройств до самопитающихся миниатюрных гаджетов. Исследование, опубликованное в журнале Small, является результатом международного сотрудничества между факультетом химической инженерии Брюссельского свободного университета, Рижским техническим университетом, Королевским Мельбурнским технологическим институтом и Институтом MESA+ Университета Твенте.

Несмотря на многообещающие результаты, перед внедрением технологии в реальные продукты предстоит решить ряд задач. Требуются дальнейшие исследования для повышения эффективности и надежности системы, особенно для крупномасштабных применений. Ученые продолжают изучать различные материалы и структуры, чтобы максимизировать потенциал этой инновационной технологии генерации энергии.


Новое на сайте

18594Записная книжка против нейросети: ценность медленного мышления 18593Растущая брешь в магнитном щите земли 18592Каким образом блокчейн-транзакции стали новым инструментом для кражи криптовалюты? 18591Что скрывается за ростом прибыли The Walt Disney Company? 18590Является ли ИИ-архитектура, имитирующая мозг, недостающим звеном на пути к AGI? 18589Как Operation Endgame нанесла сокрушительный удар по глобальной киберпреступности? 18588Кибервойна на скорости машин: почему защита должна стать автоматической к 2026 году 18587Как одна ошибка в коде открыла для хакеров 54 000 файрволов WatchGuard? 18586Криптовалютный червь: как десятки тысяч фейковых пакетов наводнили npm 18585Портативный звук JBL по рекордно низкой цене 18584Воин-крокодил триаса: находка в Бразилии связала континенты 18583Опиум как повседневность древнего Египта 18582Двойной удар по лекарственно-устойчивой малярии 18581Почему взрыв массивной звезды асимметричен в первые мгновения? 18580Почему самые удобные для поиска жизни звезды оказались наиболее враждебными?