Ssylka

Квантовые бильярдные шары: новое исследование атомных столкновений под воздействием света

Исследователи из JILA совершили прорыв в изучении атомных столкновений, управляемых светом. Группа ученых под руководством Синди Регал, профессора физики Университета Колорадо в Боулдере, разработала инновационный метод исследования столкновений атомов при сверхнизких температурах.
Квантовые бильярдные шары: новое исследование атомных столкновений под воздействием света
Изображение носит иллюстративный характер

Эксперимент, описанный в журнале Physical Review Letters, использует оптические пинцеты – сфокусированные лазерные лучи – для манипуляции отдельными атомами рубидия при температурах, близких к абсолютному нулю. Стивен Пампел, аспирант JILA и первый автор исследования, создал новую систему визуализации, позволяющую точно отслеживать поведение атомов.

В ходе эксперимента два атома помещаются в одну оптическую ловушку, где контролируемый лазерный импульс вызывает их столкновение. Свет создает квантовое суперпозиционное состояние, в результате чего при столкновении выделяется значительное количество энергии. Атомы приобретают достаточную кинетическую энергию, чтобы покинуть ловушку.

Хосе Д'Инкао, бывший научный сотрудник JILA, а ныне доцент Массачусетского университета в Бостоне, разработал теоретическую модель для понимания влияния сверхтонких взаимодействий на процесс столкновения. Исследование показало, что частота света существенно влияет на скорость столкновений, а сверхтонкая структура атомов играет ключевую роль в результатах взаимодействий.

Работа основывается на фундаментальной модели, разработанной Алланом Галлахером из JILA и Дэвидом Притчардом из MIT. Впервые удалось количественно измерить скорость потерь атомов, связанную со сверхтонкими эффектами, что значительно расширяет понимание квантовой механики столкновений.

Новый метод открывает широкие перспективы применения в квантовых вычислениях, метрологии и многочастичной физике. Особую ценность представляет возможность использования этой технологии в молекулярной квантовой науке и совершенствовании методов лазерного охлаждения.

Разработанная методика детектирования одиночных атомов с помощью специальных светоиндуцированных столкновений позволяет проводить более точные измерения и контролировать квантовые системы на атомном уровне, что критически важно для развития квантовых технологий.


Новое на сайте

18884Знаете ли вы, что приматы появились до вымирания динозавров, и готовы ли проверить свои... 18883Четыреста колец в туманности эмбрион раскрыли тридцатилетнюю тайну звездной эволюции 18882Телескоп Джеймс Уэбб раскрыл тайны сверхэффективной звездной фабрики стрелец B2 18881Математический анализ истинного количества сквозных отверстий в человеческом теле 18880Почему даже элитные суперраспознаватели проваливают тесты на выявление дипфейков без... 18879Шесть легендарных древних городов и столиц империй, местоположение которых до сих пор... 18878Обзор самых необычных медицинских диагнозов и клинических случаев 2025 года 18877Критическая уязвимость CVE-2025-14847 в MongoDB открывает удаленный доступ к памяти... 18876Научное обоснование классификации солнца как желтого карлика класса G2V 18875Как безграничная преданность горным гориллам привела Дайан Фосси к жестокой гибели? 18874Новый родственник спинозавра из Таиланда меняет представления об эволюции хищников Азии 18873Как новая электрохимическая технология позволяет удвоить добычу водорода и снизить... 18872Могут ли ледяные гиганты Уран и Нептун на самом деле оказаться каменными? 18871Внедрение вредоносного кода в расширение Trust Wallet привело к хищению 7 миллионов... 18870Проверка клинического мышления на основе редких медицинских случаев 2025 года