Ssylka

Квантовые бильярдные шары: новое исследование атомных столкновений под воздействием света

Исследователи из JILA совершили прорыв в изучении атомных столкновений, управляемых светом. Группа ученых под руководством Синди Регал, профессора физики Университета Колорадо в Боулдере, разработала инновационный метод исследования столкновений атомов при сверхнизких температурах.
Квантовые бильярдные шары: новое исследование атомных столкновений под воздействием света
Изображение носит иллюстративный характер

Эксперимент, описанный в журнале Physical Review Letters, использует оптические пинцеты – сфокусированные лазерные лучи – для манипуляции отдельными атомами рубидия при температурах, близких к абсолютному нулю. Стивен Пампел, аспирант JILA и первый автор исследования, создал новую систему визуализации, позволяющую точно отслеживать поведение атомов.

В ходе эксперимента два атома помещаются в одну оптическую ловушку, где контролируемый лазерный импульс вызывает их столкновение. Свет создает квантовое суперпозиционное состояние, в результате чего при столкновении выделяется значительное количество энергии. Атомы приобретают достаточную кинетическую энергию, чтобы покинуть ловушку.

Хосе Д'Инкао, бывший научный сотрудник JILA, а ныне доцент Массачусетского университета в Бостоне, разработал теоретическую модель для понимания влияния сверхтонких взаимодействий на процесс столкновения. Исследование показало, что частота света существенно влияет на скорость столкновений, а сверхтонкая структура атомов играет ключевую роль в результатах взаимодействий.

Работа основывается на фундаментальной модели, разработанной Алланом Галлахером из JILA и Дэвидом Притчардом из MIT. Впервые удалось количественно измерить скорость потерь атомов, связанную со сверхтонкими эффектами, что значительно расширяет понимание квантовой механики столкновений.

Новый метод открывает широкие перспективы применения в квантовых вычислениях, метрологии и многочастичной физике. Особую ценность представляет возможность использования этой технологии в молекулярной квантовой науке и совершенствовании методов лазерного охлаждения.

Разработанная методика детектирования одиночных атомов с помощью специальных светоиндуцированных столкновений позволяет проводить более точные измерения и контролировать квантовые системы на атомном уровне, что критически важно для развития квантовых технологий.


Новое на сайте

17904Символы власти вестготских женщин: орлиные броши из Аловеры 17903Как одна строка кода вскрыла уязвимость целой экосистемы? 17902Lufthansa заменит 4000 административных сотрудников искусственным интеллектом 17901Каков истинный срок годности генетической информации? 17900Сможет ли закон догнать искусственный интеллект, предлагающий психотерапию? 17899Цепная реакция заражения листерией из-за одного поставщика 17898Холодный расчет: как современная наука изменила правила стирки 17897Деревянная начинка: массовый отзыв корн-догов из-за угрозы травм 17896Случайное открытие, спасшее 500 миллионов жизней 17895Мастерство мобильной съемки: полное руководство по камере iPhone 17894Что мог рассказать личный набор инструментов охотника эпохи палеолита? 17893Почему крупнейшая звездная колыбель млечного пути производит непропорционально много... 17892Обречены ли мы есть инжир с мертвыми осами внутри? 17891Почему AI-помощникам выгодно лгать, а не признавать незнание? 17890Является ли творчество искусственного интеллекта предсказуемым недостатком?