Квантовые бильярдные шары: новое исследование атомных столкновений под воздействием света

Исследователи из JILA совершили прорыв в изучении атомных столкновений, управляемых светом. Группа ученых под руководством Синди Регал, профессора физики Университета Колорадо в Боулдере, разработала инновационный метод исследования столкновений атомов при сверхнизких температурах.
Квантовые бильярдные шары: новое исследование атомных столкновений под воздействием света
Изображение носит иллюстративный характер

Эксперимент, описанный в журнале Physical Review Letters, использует оптические пинцеты – сфокусированные лазерные лучи – для манипуляции отдельными атомами рубидия при температурах, близких к абсолютному нулю. Стивен Пампел, аспирант JILA и первый автор исследования, создал новую систему визуализации, позволяющую точно отслеживать поведение атомов.

В ходе эксперимента два атома помещаются в одну оптическую ловушку, где контролируемый лазерный импульс вызывает их столкновение. Свет создает квантовое суперпозиционное состояние, в результате чего при столкновении выделяется значительное количество энергии. Атомы приобретают достаточную кинетическую энергию, чтобы покинуть ловушку.

Хосе Д'Инкао, бывший научный сотрудник JILA, а ныне доцент Массачусетского университета в Бостоне, разработал теоретическую модель для понимания влияния сверхтонких взаимодействий на процесс столкновения. Исследование показало, что частота света существенно влияет на скорость столкновений, а сверхтонкая структура атомов играет ключевую роль в результатах взаимодействий.

Работа основывается на фундаментальной модели, разработанной Алланом Галлахером из JILA и Дэвидом Притчардом из MIT. Впервые удалось количественно измерить скорость потерь атомов, связанную со сверхтонкими эффектами, что значительно расширяет понимание квантовой механики столкновений.

Новый метод открывает широкие перспективы применения в квантовых вычислениях, метрологии и многочастичной физике. Особую ценность представляет возможность использования этой технологии в молекулярной квантовой науке и совершенствовании методов лазерного охлаждения.

Разработанная методика детектирования одиночных атомов с помощью специальных светоиндуцированных столкновений позволяет проводить более точные измерения и контролировать квантовые системы на атомном уровне, что критически важно для развития квантовых технологий.


Новое на сайте

19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии? 19152Культ священного манго и закат эпохи хунвейбинов в маоистском Китае 19151Готовы ли вы к эре коэффициента адаптивности, когда IQ и EQ больше не гарантируют успех? 19150Иранская группировка RedKitten применяет сгенерированный нейросетями код для кибершпионажа
Ссылка