Ssylka

Как сжатие в нанотрубках трансформирует материалы?

Международный исследовательский проект, реализованный университетами Уорвик и Лилль и опубликованный в Journal of the American Chemical Society, продемонстрировал возможность преобразования крупного кластерного соединения Cs2Mo6Br14 посредством экстремального ограничения внутри нанотрубок.
Как сжатие в нанотрубках трансформирует материалы?
Изображение носит иллюстративный характер

Для эксперимента использовались углеродные нанотрубки с диаметрами всего 10 ангстрем, чей внутренний объем значительно меньше размеров исходного соединения, что вынудило его молекулярные структуры приспосабливаться к сдавленным условиям.

Под воздействием такого наноконфайнмента происходит процесс элиминации, в ходе которого исходное соединение распадается с выделением части химических компонентов и формированием нового полимеризированного комплекса, обозначаемого как [Mo2Br6]x.

Образовавшийся материал представляет собой строго одномерную цепь, где отдельные звенья взаимодействуют исключительно с ближайшими соседями, наподобие ряда бар-магнитов, создающих эффект «конга-линии» в молекулярном масштабе. Такая архитектура соответствует модели изинга, что особенно интересно для исследований в области статистической физики.

«Это исследование уникально и важно в двух аспектах. Во-первых, оно демонстрирует, как ограничение неорганического кластерного материала в узких нанотрубках приводит к выведению отдельных химических компонентов с образованием полимерного соединения», — объяснил доктор Джереми Слоан из университета Уорвик. «Во-вторых, получившаяся одномерная изингоподобная структура представляет значительный интерес для формирования ферромагнитных массивов с потенциалом для хранения информации на атомном уровне», — добавил он.

Обнаруженные магнитные и физические свойства нового материала открывают перспективу использования данного подхода в квантовых вычислениях, молекулярной электронике и разработке устройств для хранения данных, где взаимодействие между соседними звеньями обеспечивает стабильность магнитного состояния.

Методика наноконфайнмента демонстрирует, как принудительное ограничение материалов в микроскопически малых объемах способно кардинально изменить их структурную химию, выводя на свет объекты с ранее недостижимыми характеристиками и функциональностью.

Такая стратегия наноcтруктуризации задает новые направления исследований, позволяя создавать перспективные одномерные материалы с уникальными магнитными свойствами и широким спектром технологических применений.


Новое на сайте

19026Станет ли бактериальная система самоуничтожения SPARDA более гибким инструментом... 19025Насколько опасной и грязной была вода в древнейших банях Помпей? 19024Гравитационная ориентация и структура космических плоскостей от земли до сверхскоплений 19023Сколько частей тела и органов можно потерять, чтобы остаться в живых? 19022Зачем Сэм Альтман решил внедрить рекламу в бесплатные версии ChatGPT? 19021Хитроумная маскировка вредоноса GootLoader через тысячи склеенных архивов 19020Удастся ли знаменитому археологу Захи Хавассу найти гробницу Нефертити до ухода на покой? 19019Действительно ли «зомби-клетки» провоцируют самую распространенную форму эпилепсии и... 19018Генетический анализ мумий гепардов из саудовской Аравии открыл путь к возрождению... 19017Вредоносная кампания в Chrome перехватывает управление HR-системами и блокирует... 19016Глубоководные оползни раскрыли историю мегаземлетрясений зоны Каскадия за 7500 лет 19015Насколько глубоки ваши познания об эволюции и происхождении человека? 19014Как уязвимость CodeBreach в AWS CodeBuild могла привести к глобальной атаке через ошибку... 19013Затерянный фрагмент древней плиты пионер меняет карту сейсмических угроз Калифорнии 19012Генетические мутации вызывают слепоту менее чем в 30% случаев вопреки прежним прогнозам