Ssylka

Терагерцевый прорыв: точное управление электронами

Ученые разработали метод, позволяющий управлять движением электронов в молекулах с использованием ультрабистрых фаз-контролируемых терагерцевых импульсов.
Терагерцевый прорыв: точное управление электронами
Изображение носит иллюстративный характер

Опубликованное в журнале Science исследование демонстрирует, как специально разработанные терагерцевые импульсы позволяют точно контролировать перераспределение электронов и формирование экситонов в молекулах.

Работа выполнена коллективом специалистов из Yokohama National University, RIKEN и ведущих исследовательских центров Японии и Кореи, под руководством профессора Икуфуми Катаяма из факультета инженерии.

Метод основан на манипуляции электронными оболочками атомов и молекул, где электроны, расположенные на определенных энергетических уровнях, определяют функциональные и реакционные свойства веществ.

При поглощении световой энергии электрон переходит на более высокий энергетический уровень, оставляя за собой положительный заряд и создавая экситон – миниатюрный энергетический пакет, способный излучать видимый свет.

Традиционные технологии, основанные на использовании видимого света, не обеспечивали достаточной энергии для изменения числа электронов в молекулах, что затрудняло управление их заряженными состояниями.

Новый подход с фаз-контролируемыми терагерцевыми импульсами позволяет с высокой точностью манипулировать электронами между молекулой и металлическим наконечником специализированного микроскопа, обеспечивая возможность добавления или удаления электронов на молекулярном уровне.

Разработанный метод дает возможность управлять формированием экситонов с контролем над точным моментом их создания, что демонстрирует преобразование невидимого терагерцевого излучения в видимый свет за счет изменений энергетических состояний в молекуле.

Прорыв открывает перспективы в создании более эффективных солнечных элементов, разработке компактных оптических приборов и ускорении работы электронных устройств, а также способствует развитию нанотехнологий, созданию передовых материалов и оптимизации катализаторов для энергетической и промышленной отраслей.

«Хотя экситоны обычно образуются при поглощении света материалом, наши результаты показывают, что они могут формироваться и через заряженные состояния с помощью специально разработанных терагерцевых импульсов. Это открывает новые возможности контроля за движением заряда в молекулах, что может привести к созданию более эффективных солнечных элементов, более компактных оптических приборов и ускоренных электронных устройств», — отметил профессор Икуфуми Катаяма.


Новое на сайте

19019Действительно ли «зомби-клетки» провоцируют самую распространенную форму эпилепсии и... 19018Генетический анализ мумий гепардов из саудовской Аравии открыл путь к возрождению... 19017Вредоносная кампания в Chrome перехватывает управление HR-системами и блокирует... 19016Глубоководные оползни раскрыли историю мегаземлетрясений зоны Каскадия за 7500 лет 19015Насколько глубоки ваши познания об эволюции и происхождении человека? 19014Как уязвимость CodeBreach в AWS CodeBuild могла привести к глобальной атаке через ошибку... 19013Затерянный фрагмент древней плиты пионер меняет карту сейсмических угроз Калифорнии 19012Генетические мутации вызывают слепоту менее чем в 30% случаев вопреки прежним прогнозам 19011Завершено строительство космического телескопа Nancy Grace Roman для поиска ста тысяч... 19010Вязкость пространства и фононы вакуума как разгадка аномалий расширения вселенной 19009Приведет ли массовое плодоношение дерева Риму к рекордному росту популяции какапо? 19008Как уязвимость CVE-2026-23550 в плагине Modular DS позволяет захватить управление сайтом? 19007Может ли уличная драка французского авантюриста раскрыть кризис американского гражданства... 19006Может ли один клик по легитимной ссылке заставить Microsoft Copilot и другие ИИ тайно... 19005Утрата истинного мастерства в эпоху алгоритмов и скрытые механизмы человеческого...