Ssylka

Терагерцевый прорыв: точное управление электронами

Ученые разработали метод, позволяющий управлять движением электронов в молекулах с использованием ультрабистрых фаз-контролируемых терагерцевых импульсов.
Терагерцевый прорыв: точное управление электронами
Изображение носит иллюстративный характер

Опубликованное в журнале Science исследование демонстрирует, как специально разработанные терагерцевые импульсы позволяют точно контролировать перераспределение электронов и формирование экситонов в молекулах.

Работа выполнена коллективом специалистов из Yokohama National University, RIKEN и ведущих исследовательских центров Японии и Кореи, под руководством профессора Икуфуми Катаяма из факультета инженерии.

Метод основан на манипуляции электронными оболочками атомов и молекул, где электроны, расположенные на определенных энергетических уровнях, определяют функциональные и реакционные свойства веществ.

При поглощении световой энергии электрон переходит на более высокий энергетический уровень, оставляя за собой положительный заряд и создавая экситон – миниатюрный энергетический пакет, способный излучать видимый свет.

Традиционные технологии, основанные на использовании видимого света, не обеспечивали достаточной энергии для изменения числа электронов в молекулах, что затрудняло управление их заряженными состояниями.

Новый подход с фаз-контролируемыми терагерцевыми импульсами позволяет с высокой точностью манипулировать электронами между молекулой и металлическим наконечником специализированного микроскопа, обеспечивая возможность добавления или удаления электронов на молекулярном уровне.

Разработанный метод дает возможность управлять формированием экситонов с контролем над точным моментом их создания, что демонстрирует преобразование невидимого терагерцевого излучения в видимый свет за счет изменений энергетических состояний в молекуле.

Прорыв открывает перспективы в создании более эффективных солнечных элементов, разработке компактных оптических приборов и ускорении работы электронных устройств, а также способствует развитию нанотехнологий, созданию передовых материалов и оптимизации катализаторов для энергетической и промышленной отраслей.

«Хотя экситоны обычно образуются при поглощении света материалом, наши результаты показывают, что они могут формироваться и через заряженные состояния с помощью специально разработанных терагерцевых импульсов. Это открывает новые возможности контроля за движением заряда в молекулах, что может привести к созданию более эффективных солнечных элементов, более компактных оптических приборов и ускоренных электронных устройств», — отметил профессор Икуфуми Катаяма.


Новое на сайте

18594Записная книжка против нейросети: ценность медленного мышления 18593Растущая брешь в магнитном щите земли 18592Каким образом блокчейн-транзакции стали новым инструментом для кражи криптовалюты? 18591Что скрывается за ростом прибыли The Walt Disney Company? 18590Является ли ИИ-архитектура, имитирующая мозг, недостающим звеном на пути к AGI? 18589Как Operation Endgame нанесла сокрушительный удар по глобальной киберпреступности? 18588Кибервойна на скорости машин: почему защита должна стать автоматической к 2026 году 18587Как одна ошибка в коде открыла для хакеров 54 000 файрволов WatchGuard? 18586Криптовалютный червь: как десятки тысяч фейковых пакетов наводнили npm 18585Портативный звук JBL по рекордно низкой цене 18584Воин-крокодил триаса: находка в Бразилии связала континенты 18583Опиум как повседневность древнего Египта 18582Двойной удар по лекарственно-устойчивой малярии 18581Почему взрыв массивной звезды асимметричен в первые мгновения? 18580Почему самые удобные для поиска жизни звезды оказались наиболее враждебными?