Ученые разработали метод, позволяющий управлять движением электронов в молекулах с использованием ультрабистрых фаз-контролируемых терагерцевых импульсов.

Опубликованное в журнале Science исследование демонстрирует, как специально разработанные терагерцевые импульсы позволяют точно контролировать перераспределение электронов и формирование экситонов в молекулах.
Работа выполнена коллективом специалистов из Yokohama National University, RIKEN и ведущих исследовательских центров Японии и Кореи, под руководством профессора Икуфуми Катаяма из факультета инженерии.
Метод основан на манипуляции электронными оболочками атомов и молекул, где электроны, расположенные на определенных энергетических уровнях, определяют функциональные и реакционные свойства веществ.
При поглощении световой энергии электрон переходит на более высокий энергетический уровень, оставляя за собой положительный заряд и создавая экситон – миниатюрный энергетический пакет, способный излучать видимый свет.
Традиционные технологии, основанные на использовании видимого света, не обеспечивали достаточной энергии для изменения числа электронов в молекулах, что затрудняло управление их заряженными состояниями.
Новый подход с фаз-контролируемыми терагерцевыми импульсами позволяет с высокой точностью манипулировать электронами между молекулой и металлическим наконечником специализированного микроскопа, обеспечивая возможность добавления или удаления электронов на молекулярном уровне.
Разработанный метод дает возможность управлять формированием экситонов с контролем над точным моментом их создания, что демонстрирует преобразование невидимого терагерцевого излучения в видимый свет за счет изменений энергетических состояний в молекуле.
Прорыв открывает перспективы в создании более эффективных солнечных элементов, разработке компактных оптических приборов и ускорении работы электронных устройств, а также способствует развитию нанотехнологий, созданию передовых материалов и оптимизации катализаторов для энергетической и промышленной отраслей.
«Хотя экситоны обычно образуются при поглощении света материалом, наши результаты показывают, что они могут формироваться и через заряженные состояния с помощью специально разработанных терагерцевых импульсов. Это открывает новые возможности контроля за движением заряда в молекулах, что может привести к созданию более эффективных солнечных элементов, более компактных оптических приборов и ускоренных электронных устройств», — отметил профессор Икуфуми Катаяма.

Изображение носит иллюстративный характер
Опубликованное в журнале Science исследование демонстрирует, как специально разработанные терагерцевые импульсы позволяют точно контролировать перераспределение электронов и формирование экситонов в молекулах.
Работа выполнена коллективом специалистов из Yokohama National University, RIKEN и ведущих исследовательских центров Японии и Кореи, под руководством профессора Икуфуми Катаяма из факультета инженерии.
Метод основан на манипуляции электронными оболочками атомов и молекул, где электроны, расположенные на определенных энергетических уровнях, определяют функциональные и реакционные свойства веществ.
При поглощении световой энергии электрон переходит на более высокий энергетический уровень, оставляя за собой положительный заряд и создавая экситон – миниатюрный энергетический пакет, способный излучать видимый свет.
Традиционные технологии, основанные на использовании видимого света, не обеспечивали достаточной энергии для изменения числа электронов в молекулах, что затрудняло управление их заряженными состояниями.
Новый подход с фаз-контролируемыми терагерцевыми импульсами позволяет с высокой точностью манипулировать электронами между молекулой и металлическим наконечником специализированного микроскопа, обеспечивая возможность добавления или удаления электронов на молекулярном уровне.
Разработанный метод дает возможность управлять формированием экситонов с контролем над точным моментом их создания, что демонстрирует преобразование невидимого терагерцевого излучения в видимый свет за счет изменений энергетических состояний в молекуле.
Прорыв открывает перспективы в создании более эффективных солнечных элементов, разработке компактных оптических приборов и ускорении работы электронных устройств, а также способствует развитию нанотехнологий, созданию передовых материалов и оптимизации катализаторов для энергетической и промышленной отраслей.
«Хотя экситоны обычно образуются при поглощении света материалом, наши результаты показывают, что они могут формироваться и через заряженные состояния с помощью специально разработанных терагерцевых импульсов. Это открывает новые возможности контроля за движением заряда в молекулах, что может привести к созданию более эффективных солнечных элементов, более компактных оптических приборов и ускоренных электронных устройств», — отметил профессор Икуфуми Катаяма.