Ssylka

Как сжатие в нанотрубках трансформирует материалы?

Международный исследовательский проект, реализованный университетами Уорвик и Лилль и опубликованный в Journal of the American Chemical Society, продемонстрировал возможность преобразования крупного кластерного соединения Cs2Mo6Br14 посредством экстремального ограничения внутри нанотрубок.
Как сжатие в нанотрубках трансформирует материалы?
Изображение носит иллюстративный характер

Для эксперимента использовались углеродные нанотрубки с диаметрами всего 10 ангстрем, чей внутренний объем значительно меньше размеров исходного соединения, что вынудило его молекулярные структуры приспосабливаться к сдавленным условиям.

Под воздействием такого наноконфайнмента происходит процесс элиминации, в ходе которого исходное соединение распадается с выделением части химических компонентов и формированием нового полимеризированного комплекса, обозначаемого как [Mo2Br6]x.

Образовавшийся материал представляет собой строго одномерную цепь, где отдельные звенья взаимодействуют исключительно с ближайшими соседями, наподобие ряда бар-магнитов, создающих эффект «конга-линии» в молекулярном масштабе. Такая архитектура соответствует модели изинга, что особенно интересно для исследований в области статистической физики.

«Это исследование уникально и важно в двух аспектах. Во-первых, оно демонстрирует, как ограничение неорганического кластерного материала в узких нанотрубках приводит к выведению отдельных химических компонентов с образованием полимерного соединения», — объяснил доктор Джереми Слоан из университета Уорвик. «Во-вторых, получившаяся одномерная изингоподобная структура представляет значительный интерес для формирования ферромагнитных массивов с потенциалом для хранения информации на атомном уровне», — добавил он.

Обнаруженные магнитные и физические свойства нового материала открывают перспективу использования данного подхода в квантовых вычислениях, молекулярной электронике и разработке устройств для хранения данных, где взаимодействие между соседними звеньями обеспечивает стабильность магнитного состояния.

Методика наноконфайнмента демонстрирует, как принудительное ограничение материалов в микроскопически малых объемах способно кардинально изменить их структурную химию, выводя на свет объекты с ранее недостижимыми характеристиками и функциональностью.

Такая стратегия наноcтруктуризации задает новые направления исследований, позволяя создавать перспективные одномерные материалы с уникальными магнитными свойствами и широким спектром технологических применений.


Новое на сайте

18590Является ли ИИ-архитектура, имитирующая мозг, недостающим звеном на пути к AGI? 18589Как Operation Endgame нанесла сокрушительный удар по глобальной киберпреступности? 18588Кибервойна на скорости машин: почему защита должна стать автоматической к 2026 году 18587Как одна ошибка в коде открыла для хакеров 54 000 файрволов WatchGuard? 18586Криптовалютный червь: как десятки тысяч фейковых пакетов наводнили npm 18585Портативный звук JBL по рекордно низкой цене 18584Воин-крокодил триаса: находка в Бразилии связала континенты 18583Опиум как повседневность древнего Египта 18582Двойной удар по лекарственно-устойчивой малярии 18581Почему взрыв массивной звезды асимметричен в первые мгновения? 18580Почему самые удобные для поиска жизни звезды оказались наиболее враждебными? 18579Смертоносные вспышки красных карликов угрожают обитаемым мирам 18578Почему самый активный подводный вулкан тихого океана заставил ученых пересмотреть дату... 18577Вспышка на солнце сорвала запуск ракеты New Glenn к Марсу 18576Как фишинг-платформа Lighthouse заработала миллиард долларов и почему Google подала на...