Ssylka

Как уязвимость LangGrinch использует инъекцию сериализации для кражи секретов?

Исследователь Ярден Порат из организации Cyata 4 декабря 2025 года сообщил о критической уязвимости в популярном Python-пакете langchain-core, который предоставляет базовые интерфейсы для приложений на основе больших языковых моделей (LLM). Уязвимость, получившая кодовое название LangGrinch и идентификатор CVE-2025-68664, была оценена как критическая с показателем 9.3 из 10.0 по шкале CVSS. Проблема кроется в механизме сериализации данных и позволяет злоумышленникам выполнять произвольный код или извлекать конфиденциальную информацию.
Как уязвимость LangGrinch использует инъекцию сериализации для кражи секретов?
Изображение носит иллюстративный характер

Техническая причина сбоя заключается в некорректной работе функций dumps() и dumpd(), которые не выполняют надлежащее экранирование пользовательских словарей, содержащих ключ «lc». В архитектуре LangChain этот ключ используется внутренними процессами для маркировки сериализованных объектов. Если контролируемые пользователем данные содержат этот ключ, система ошибочно воспринимает их как легитимный объект LangChain в процессе десериализации, а не как обычные данные, что открывает путь для инъекции сериализации.

Механизм атаки подразумевает, что злоумышленник заставляет цикл оркестрации сериализовать и затем десериализовать контент с ключом «lc». Это действие приводит к созданию небезопасного произвольного объекта, активируя пути выполнения кода, выгодные атакующему. Основным вектором атаки является промпт-инъекция, через которую злоумышленники получают контроль над такими полями, как metadata, additional_kwargs и response_metadata. Эти поля обрабатываются во время потоковых операций, позволяя вредоносному коду проникнуть в систему.

Последствия эксплуатации CVE-2025-68664 могут быть катастрофическими для безопасности приложения. Уязвимость позволяет извлекать секреты из переменных окружения, особенно если активирована настройка secrets_from_env=True. Кроме того, становится возможным небезопасное создание классов в рамках доверенных пространств имен, таких как langchain_core, langchain и langchain_community.

Помимо кражи данных, LangGrinch создает риски выполнения произвольного кода, что может быть достигнуто с использованием шаблонов Jinja2. Также злоумышленники могут манипулировать поведением LLM, влияя на ответы модели. Как отметил исследователь Ярден Порат, этот инцидент демонстрирует пересечение проблем искусственного интеллекта и классической безопасности: «Выходные данные LLM являются ненадежными входными данными».

Разработчики LangChain выпустили исправление, внедряющее строгие ограничения по умолчанию. В функции load() и loads() был добавлен новый параметр allowed_objects (белый список), определяющий допустимые классы. Использование шаблонов Jinja2 теперь заблокировано по умолчанию, а опция secrets_from_env переведена в состояние «False», что отключает автоматическую загрузку секретов из окружения.

Для устранения уязвимости в Python-пакете langchain-core пользователям версий от 0.0 до 1.2.5 необходимо обновиться до версии 1.2.5. Для тех, кто использует версии ниже 0.3.81, исправление включено в выпуск 0.3.81. Обновление является обязательным для предотвращения рисков удаленного выполнения кода и утечки данных.

Аналогичная уязвимость инъекции сериализации была обнаружена и в JavaScript-версии библиотеки — LangChain.js. Ей присвоен идентификатор CVE-2025-68665 и оценка CVSS 8.6. Проблема также связана с неправильным экранированием ключей «lc», что требует немедленного обновления затронутых пакетов в экосистеме JavaScript.

Исправления для JavaScript-экосистемы распределены по нескольким пакетам. Основная библиотека LangChain.js (версии от 0.0 до 1.1.8) исправлена в версии 1.1.8. Пакет @langchain/core версии ниже 0.3.80 обновлен в версии 0.3.80. Для пакета langchain версии от 1.0.0 до 1.2.3 патч выпущен в версии 1.2.3, а для версий ниже 0.3.37 — в 0.3.37.


Новое на сайте

18865Как уязвимость LangGrinch использует инъекцию сериализации для кражи секретов? 18864Считавшаяся вымершей в Таиланде суматранская кошка обнаружена впервые за три десятилетия 18863Удастся ли ученым спасти «маленького додо» от полного исчезновения в лесах Самоа? 18862Готовы ли вы проверить свои знания о строении мозга и знаменитых научных экспериментах? 18861Стратегия долгосрочного мышления в эпоху мгновенных результатов 18860Римские артефакты из канадского секонд-хенда стали объектом научного расследования 18859Критическая уязвимость в устаревших видеорегистраторах Digiever стала целью для ботнетов... 18858Злоумышленники активно эксплуатируют пятилетнюю уязвимость Fortinet для обхода... 18857«Джеймс Уэбб»: путешествие от тропических лесов к краю времени 18856Почему нотаризация Apple не смогла остановить новый шпионский инструмент MacSync? 18855Как обнаружение скелета Люси возрастом 3,2 миллиона лет изменило понимание человеческой... 18854Действительно ли первая рождественская ночь была тихой, или Иисус родился в эпоху... 18853Первая в истории потенциальная суперкилоновая: открытие уникального гибридного взрыва... 18852Откуда взялась необъяснимая планета с атмосферой из сажи и алмазов, которую обнаружил... 18851Станет ли интернет зомби-апокалипсисом и почему доверие превращается в самую дорогую...