Ssylka

Могут ли наноструктуры сапфира стать новым стандартом технологий?

Ученые из Университета Техаса в Остине разработали инновационный способ формирования сапфировых наноструктур, которые дополняют привычную твердость и устойчивость к царапинам дополнительными функциями: самоочищением, снижением бликов, защитой от запотевания и отпугиванием пыли.
Могут ли наноструктуры сапфира стать новым стандартом технологий?
Изображение носит иллюстративный характер

Сапфир традиционно применяется в оборонной отрасли, электронике и при создании защитных экранов для смартфонов, очков и ветровых стекол. Его исключительная прочность и красота делают его высокоценным материалом, но именно эти свойства затрудняют обработку на микроуровне.

Во главе исследования стоит Чих-Хао Чанг, доцент кафедры машиностроения, который отмечает: «Сапфир – это высокоценный материал благодаря своей твердости и множеству других благоприятных свойств, но именно эти же свойства, делающие его привлекательным, усложняют его производство в малых масштабах».

Наноструктуры, полученные в ходе работы, обладают самым высоким аспектным коэффициентом для сапфира. Недавний доктор Кун-Чиен Чиен подчеркнул, что новое решение позволяет преодолеть традиционную проблему хрупкости подобных наноматериалов. Аспирант Мехмет Кепенекчи добавил: «Наши сапфировые наноструктуры не только многофункциональны, но и механически прочны, что делает их идеальными для приложений, где критически важны долговечность и производительность».

Студент Эндрю Туннел провел эксперименты по адгезии пыли и установил, что «наша самоочищающаяся поверхность сапфира способна поддерживать 98,7% зоны, свободной от пыли, используя только силу гравитации».

Документированное в журнале Materials Horizons исследование опирается на биомиметическую конструкцию, вдохновленную структурой глаза мотылька. Сужающийся профиль наносит улучшение передачи света, снижая блики, а высокая энергоемкость поверхности и значительный аспектный коэффициент способствуют формированию супергидрофильного эффекта для предотвращения запотевания. При дополнительной обработке достигается эффект, аналогичный листу лотоса, позволяющий воде легко скатываться с поверхности.

Технология находит применение в создании дисплеев, оптических систем, камер и ветровых стекол, где важна устойчивость к пыли, бликам и запотеванию. Разработки также перспективны для оборонной, аэрокосмической и космической промышленности, где защита чувствительного оборудования и достижение высокой надежности играют решающую роль.

Дальнейшие исследования направлены на масштабирование производства наноструктур и совершенствование их механических и химических характеристик, что открывает новые возможности для их использования в широком спектре отраслей.


Новое на сайте

16948Почему символ американской свободы был приговорен к уничтожению? 16947Рукотворное убежище для исчезающих амфибий 16946Какую тайну хранит жестокая жизнь и загадочная смерть сестер каменного века? 16945Скрывает ли Плутон экваториальный пояс из гигантских ледяных клинков? 16944Взгляд на зарю вселенной телескопом Джеймса Уэбба 16943От сада чудес до протеина из атмосферы 16942Кратковременный сон наяву: научное объяснение пустоты в мыслях 16941Спутники Starlink создают непреднамеренную угрозу для радиоастрономии 16940Аутентификационная чума: бэкдор Plague год оставался невидимым 16939Фиолетовый страж тайских лесов: редкий краб-принцесса явился миру 16938Хроники мангровых лесов: победители фотоконкурса 2025 года 16937Танцевали ли планеты солнечной системы идеальный вальс? 16936Ай-ай: причудливый лемур, проклятый своим пальцем 16935Как рентгеновское зрение раскрывает самые бурные процессы во вселенной? 16934Уязвимость нулевого дня в SonicWall VPN стала оружием группировки Akira