Прорыв в квантовых вычислениях: успешное моделирование рассеяния частиц

Международная группа ученых из Национальной лаборатории имени Лоуренса Ливермора (LLNL), InQubator for Quantum Simulations и Университета Тренто достигла значительного прогресса в использовании квантовых компьютеров для моделирования процессов рассеяния частиц. Результаты исследования опубликованы в журнале Physical Review C.
Прорыв в квантовых вычислениях: успешное моделирование рассеяния частиц
Изображение носит иллюстративный характер

Рассеяние частиц – фундаментальное явление, наблюдаемое как в повседневной жизни при столкновении бильярдных шаров, так и в космических масштабах, где сталкивающиеся атомные ядра питают звезды и создают тяжелые элементы. Понимание процессов рассеяния критически важно для раскрытия фундаментальных сил, управляющих Вселенной.

Исследовательская группа разработала алгоритм для квантового компьютера, способный точно моделировать нерелятивистское упругое рассеяние – процесс, при котором частица-снаряд движется значительно медленнее скорости света и отскакивает от неподвижной мишени без потери энергии.

София Кваглиони, ученый из LLNL, подчеркивает: «Эксперименты по рассеянию помогают нам исследовать фундаментальные частицы и их взаимодействия». Рассеяние частиц в веществе позволяет понять, как организована материя на микроскопическом уровне.

Традиционные компьютеры сталкиваются с серьезными ограничениями при моделировании процессов рассеяния. По словам Кайла Вендта из LLNL, «моделирование на основе микроскопической физики для ядер, участвующих в звездных взрывах, потребовало бы суперкомпьютера размером с Луну». Квантовые компьютеры способны кодировать и обрабатывать больше информации, делая их идеальными для таких симуляций.

Разработанный алгоритм работает, отслеживая столкновение частиц шаг за шагом, используя детектор и вариационный метод. Учитывая волновую природу частиц в квантовой механике, алгоритм измеряет сдвиг положения волны в её цикле, создавая и варьируя «волну-детектор» до совпадения с волной рассеянных частиц.

Алгоритм прошел успешное тестирование сначала на классическом компьютере, а затем на квантовых процессорах IBM. Особенно важно, что использованный вариационный метод показал устойчивость к шумам в современном квантовом оборудовании, открывая путь к более сложным симуляциям в будущем.

Хотя метод был продемонстрирован для простейшего случая нерелятивистского упругого рассеяния, он может быть расширен для моделирования более сложных процессов, недоступных даже самым мощным классическим суперкомпьютерам при работе с большим количеством частиц.


Новое на сайте

19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии? 19152Культ священного манго и закат эпохи хунвейбинов в маоистском Китае 19151Готовы ли вы к эре коэффициента адаптивности, когда IQ и EQ больше не гарантируют успех? 19150Иранская группировка RedKitten применяет сгенерированный нейросетями код для кибершпионажа
Ссылка