Ssylka

Прорыв в квантовой акустике: ученые впервые связали массивные звуковые резонаторы

Исследователи из Школы молекулярной инженерии Прицкера Чикагского университета достигли значительного прогресса в области квантовой физики, продемонстрировав высококачественное запутывание между двумя акустическими волновыми резонаторами. Это достижение выходит далеко за пределы традиционного квантового запутывания, обычно наблюдаемого только между отдельными частицами.
Прорыв в квантовой акустике: ученые впервые связали массивные звуковые резонаторы
Изображение носит иллюстративный характер

Под руководством профессора Эндрю Клиланда команда ученых работала с фононами – квантовыми частицами звука, представляющими коллективное движение триллионов атомов. «Фононы – это квантовые частицы звука... Это коллективное движение, возможно, квадриллионов частиц, действующих вместе», – поясняет Хонг Цяо, постдокторант UChicago PME и один из ведущих авторов исследования.

Лаборатория Клиланда имеет богатую историю достижений в области квантовой акустики. Они первыми создали и обнаружили одиночные фононы, а затем впервые запутали два фонона. Признанием их достижений стало назначение Эндрю Клиланда научным сотрудником факультета Ванневара Буша Министерства обороны в 2024 году.

Устройство, разработанное командой, состоит из двух поверхностных акустических резонаторов, каждый из которых размещен на отдельном чипе со своей опорной структурой. Каждый резонатор соединен с собственным сверхпроводящим кубитом, который генерирует и определяет запутанные фононные состояния.

«Многие исследовательские группы продемонстрировали возможность запутывания очень малых объектов вплоть до одного электрона. Но здесь мы демонстрируем запутывание между двумя массивными объектами. Кроме того, наша платформа масштабируема», – отмечает Мин-Хань Чжоу, бывший докторант UChicago PME, ныне работающий в Центре квантовых вычислений Amazon Web Services.

Текущее время жизни резонатора составляет около 300 наносекунд, но исследователи стремятся увеличить его до более чем 100 микросекунд. Такое улучшение открыло бы новые возможности для квантовой связи и распределенных квантовых вычислений.

По словам профессора Клиланда, «наша способность запутывать массивные объекты путем запутывания их коллективного движения раздвигает границы возможного. Область, где существует кот Шрёдингера, становится больше с каждым достижением». Это исследование, опубликованное в Nature Communications, представляет собой важный шаг к созданию крупномасштабных квантовых сетей.


Новое на сайте

18604Является ли рекордная скидка на Garmin Instinct 3 Solar лучшим предложением ноября? 18603Могла ли детская смесь ByHeart вызвать национальную вспышку ботулизма? 18602Готовы ли банки доверить агентскому ИИ управление деньгами клиентов? 18601Как сезонные ветры создают миллионы загадочных полос на Марсе? 18600Как тело человека превращается в почву за 90 дней? 18599Как ваш iPhone может заменить паспорт при внутренних перелетах по США? 18598Мозговой шторм: что происходит, когда мозг отключается от усталости 18597Раскрыта асимметричная форма рождения сверхновой 18596Скидки Ninja: как получить идеальную корочку и сэкономить на доставке 18595Почему работа на нескольких работах становится новой нормой? 18594Записная книжка против нейросети: ценность медленного мышления 18593Растущая брешь в магнитном щите земли 18592Каким образом блокчейн-транзакции стали новым инструментом для кражи криптовалюты? 18591Что скрывается за ростом прибыли The Walt Disney Company? 18590Является ли ИИ-архитектура, имитирующая мозг, недостающим звеном на пути к AGI?