Прорыв в квантовой акустике: ученые впервые связали массивные звуковые резонаторы

Исследователи из Школы молекулярной инженерии Прицкера Чикагского университета достигли значительного прогресса в области квантовой физики, продемонстрировав высококачественное запутывание между двумя акустическими волновыми резонаторами. Это достижение выходит далеко за пределы традиционного квантового запутывания, обычно наблюдаемого только между отдельными частицами.
Прорыв в квантовой акустике: ученые впервые связали массивные звуковые резонаторы
Изображение носит иллюстративный характер

Под руководством профессора Эндрю Клиланда команда ученых работала с фононами – квантовыми частицами звука, представляющими коллективное движение триллионов атомов. «Фононы – это квантовые частицы звука... Это коллективное движение, возможно, квадриллионов частиц, действующих вместе», – поясняет Хонг Цяо, постдокторант UChicago PME и один из ведущих авторов исследования.

Лаборатория Клиланда имеет богатую историю достижений в области квантовой акустики. Они первыми создали и обнаружили одиночные фононы, а затем впервые запутали два фонона. Признанием их достижений стало назначение Эндрю Клиланда научным сотрудником факультета Ванневара Буша Министерства обороны в 2024 году.

Устройство, разработанное командой, состоит из двух поверхностных акустических резонаторов, каждый из которых размещен на отдельном чипе со своей опорной структурой. Каждый резонатор соединен с собственным сверхпроводящим кубитом, который генерирует и определяет запутанные фононные состояния.

«Многие исследовательские группы продемонстрировали возможность запутывания очень малых объектов вплоть до одного электрона. Но здесь мы демонстрируем запутывание между двумя массивными объектами. Кроме того, наша платформа масштабируема», – отмечает Мин-Хань Чжоу, бывший докторант UChicago PME, ныне работающий в Центре квантовых вычислений Amazon Web Services.

Текущее время жизни резонатора составляет около 300 наносекунд, но исследователи стремятся увеличить его до более чем 100 микросекунд. Такое улучшение открыло бы новые возможности для квантовой связи и распределенных квантовых вычислений.

По словам профессора Клиланда, «наша способность запутывать массивные объекты путем запутывания их коллективного движения раздвигает границы возможного. Область, где существует кот Шрёдингера, становится больше с каждым достижением». Это исследование, опубликованное в Nature Communications, представляет собой важный шаг к созданию крупномасштабных квантовых сетей.


Новое на сайте

19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии? 19152Культ священного манго и закат эпохи хунвейбинов в маоистском Китае 19151Готовы ли вы к эре коэффициента адаптивности, когда IQ и EQ больше не гарантируют успех? 19150Иранская группировка RedKitten применяет сгенерированный нейросетями код для кибершпионажа
Ссылка