Ssylka

Как оптическая революция в квантовых компьютерах может преодолеть барьер масштабирования?

Физики из Института науки и технологий Австрии (ISTA) совершили прорыв в области квантовых вычислений, разработав полностью оптический метод считывания состояний сверхпроводящих кубитов. Результаты исследования опубликованы в престижном журнале Nature Physics.
Как оптическая революция в квантовых компьютерах может преодолеть барьер масштабирования?
Изображение носит иллюстративный характер

Современные квантовые компьютеры сталкиваются с серьезными ограничениями в масштабировании из-за необходимости охлаждать сверхпроводящие кубиты до температур, близких к абсолютному нулю. Электрические соединения, используемые для управления кубитами, требуют массивного криогенного оборудования и подвержены шумам, что существенно ограничивает возможности расширения систем.

Группа исследователей под руководством профессора Йоханнеса Финка разработала инновационное решение, использующее электрооптический преобразователь. Это устройство конвертирует оптические сигналы инфракрасного диапазона в микроволновые частоты, понятные сверхпроводящим кубитам, и обратно. «Мы показали, что можем посылать инфракрасный свет близко к кубитам, не нарушая их сверхпроводимости», – поясняет Томас Вернер, соавтор исследования.

Георг Арнольд, другой ведущий автор работы, подчеркивает потенциал новой технологии: «Этот подход может позволить увеличить число кубитов до уровня, необходимого для практических вычислений. Он также закладывает основу для создания сети квантовых компьютеров, соединенных оптическими волокнами при комнатной температуре».

Оптические волокна обладают существенными преимуществами перед электрическими соединениями: высокой скоростью передачи данных, низкими потерями, широкой полосой пропускания и минимальным тепловыделением. Это особенно важно, учитывая, что для создания «полезного» квантового компьютера требуются тысячи или миллионы кубитов.

На выставке CES 2025 генеральный директор Nvidia Дженсен Хуанг предсказал, что до появления «по-настоящему полезных квантовых компьютеров» остается около двух десятилетий. Однако новая разработка ISTA может существенно ускорить этот процесс, устраняя одно из главных препятствий на пути к масштабированию квантовых систем.

Несмотря на текущие ограничения прототипа, связанные с относительно высокой потребляемой оптической мощностью, исследование доказывает принципиальную возможность полностью оптического считывания сверхпроводящих кубитов. Технология открывает путь к созданию модульных квантовых устройств, объединенных в сети через стандартное оптическое волокно при комнатной температуре.


Новое на сайте

18604Является ли рекордная скидка на Garmin Instinct 3 Solar лучшим предложением ноября? 18603Могла ли детская смесь ByHeart вызвать национальную вспышку ботулизма? 18602Готовы ли банки доверить агентскому ИИ управление деньгами клиентов? 18601Как сезонные ветры создают миллионы загадочных полос на Марсе? 18600Как тело человека превращается в почву за 90 дней? 18599Как ваш iPhone может заменить паспорт при внутренних перелетах по США? 18598Мозговой шторм: что происходит, когда мозг отключается от усталости 18597Раскрыта асимметричная форма рождения сверхновой 18596Скидки Ninja: как получить идеальную корочку и сэкономить на доставке 18595Почему работа на нескольких работах становится новой нормой? 18594Записная книжка против нейросети: ценность медленного мышления 18593Растущая брешь в магнитном щите земли 18592Каким образом блокчейн-транзакции стали новым инструментом для кражи криптовалюты? 18591Что скрывается за ростом прибыли The Walt Disney Company? 18590Является ли ИИ-архитектура, имитирующая мозг, недостающим звеном на пути к AGI?