Ssylka

Способен ли крошечный фотонный чип изменить всю оптику будущего?

Исследователи из Университета Шанхая науки и технологий (USST) представили разработку под названием "This AI chip is the size of a grain of salt", о которой свидетельствует иллюстрация по адресу . Основная задача этого устройства — обрабатывать данные, передаваемые по оптоволоконным кабелям на скорости света, без задержек на электрическую декодировку.
Способен ли крошечный фотонный чип изменить всю оптику будущего?
Изображение носит иллюстративный характер

В отличие от стандартных систем, использующих энергоёмкое оборудование для расшифровки фотонных сигналов, новый чип опирается на принципы пассивных нейронных сетей. Его разработка вдохновлена концепцией all-optical diffractive deep neural network, которую в 2018 году предложили учёные из Университета Калифорнии в Лос-Анджелесе (UCLA). Суть метода сводится к использованию особым образом структурированных полимерных слоёв, способных перенаправлять потоки фотонов для вычислительных операций.

По данным, опубликованным в журнале Nature Photonics и отмеченным изданием New Scientist, команда из USST создала "пассивную, хорошо обученную нейронную сеть", которая физически манипулирует светом для вычислений. Размер такого чипа сопоставим с зерном соли. Его малые габариты позволяют интегрировать устройство к концу волоконно-оптической линии, где фотонный сигнал уже несёт зашифрованную информацию.

Физическую основу обеспечил метод "трёхмерной двухфотонной нанолитографии", применяемый для 3D-печати сверхтонких полимерных компонентов. Подобная конструкция помогает чипу выполнять распознавание оптических сигналов прямо в процессе передачи. Эксперименты включали отправку фотонов, несущих зашифрованные изображения цифр, с последующим их анализом чипом для восстановления исходных образов.

Тестовые результаты продемонстрировали высокую точность и скорость работы системы: время обработки измеряется триллионными долями секунды, а энергопотребление в тысячи раз меньше по сравнению с традиционными методами вычислительной нейронной обработки. Эти показатели особенно важны в условиях растущего объёма передаваемой информации и возросших требований к энергоэффективности.

Некоторые ограничения связаны с тем, что каждому чипу необходима индивидуальная настройка под конкретную задачу, а дефекты в его микроскопических слоях могут приводить к отклонениям в работе. Тем не менее разработчики прогнозируют применение такого подхода в эндоскопии и, возможно, в будущем — в области квантовых вычислений. По их словам, технология обещает открыть невиданные ранее возможности.

Сочетание крошечного формата, способности работать с фотонными потоками и пониженных энергорастрат делают эти чипы ключевым шагом вперёд на пути к более быстрым, эффективным и компактным системам анализа больших массивов оптических данных. Исследователи полагают, что дальнейшая оптимизация обеспечит "беспрецедентные функциональные возможности" для фотонных решений завтрашнего дня.


Новое на сайте

9373Загадка времени: как гравитация управляет его течением во Вселенной 9372Новая жизнь старого ноутбука: полное руководство по установке SSD 9371Криптореволюция в Telegram: как мем-коины и мини-приложения меняют правила игры 9370Как путешествие во времени преображает древний собор в Линкольне? 9369Что скрывает жестокая находка в лесах Северного Ланаркшира? 9368Как Притцкеровская премия определяет будущее мировой архитектуры? 9367Уникальная маскировка: личинки мух-падальщиц научились обманывать термитов 9366Бумажное наследие Эксетера: искусство и история старинных мельниц 9365Как подготовить сильную рассаду зимним посевом? 9364Как кулинарное наследие Сабаха меняет современную малайзийскую гастрономию? 9363Как изменится движение по Московскому скоростному диаметру с введением платного проезда? 9362Загадочные огни Саммервилля: научное объяснение паранормального феномена 9361Как один ядерный взрыв в космосе изменил ход истории? 9360Почему Ташкент стал узбекским: тайна судьбоносного решения 1924 года? 9359Что скрывают древние скелеты Темзы?