Ssylka

Способен ли крошечный фотонный чип изменить всю оптику будущего?

Исследователи из Университета Шанхая науки и технологий (USST) представили разработку под названием "This AI chip is the size of a grain of salt", о которой свидетельствует иллюстрация по адресу . Основная задача этого устройства — обрабатывать данные, передаваемые по оптоволоконным кабелям на скорости света, без задержек на электрическую декодировку.
Способен ли крошечный фотонный чип изменить всю оптику будущего?
Изображение носит иллюстративный характер

В отличие от стандартных систем, использующих энергоёмкое оборудование для расшифровки фотонных сигналов, новый чип опирается на принципы пассивных нейронных сетей. Его разработка вдохновлена концепцией all-optical diffractive deep neural network, которую в 2018 году предложили учёные из Университета Калифорнии в Лос-Анджелесе (UCLA). Суть метода сводится к использованию особым образом структурированных полимерных слоёв, способных перенаправлять потоки фотонов для вычислительных операций.

По данным, опубликованным в журнале Nature Photonics и отмеченным изданием New Scientist, команда из USST создала "пассивную, хорошо обученную нейронную сеть", которая физически манипулирует светом для вычислений. Размер такого чипа сопоставим с зерном соли. Его малые габариты позволяют интегрировать устройство к концу волоконно-оптической линии, где фотонный сигнал уже несёт зашифрованную информацию.

Физическую основу обеспечил метод "трёхмерной двухфотонной нанолитографии", применяемый для 3D-печати сверхтонких полимерных компонентов. Подобная конструкция помогает чипу выполнять распознавание оптических сигналов прямо в процессе передачи. Эксперименты включали отправку фотонов, несущих зашифрованные изображения цифр, с последующим их анализом чипом для восстановления исходных образов.

Тестовые результаты продемонстрировали высокую точность и скорость работы системы: время обработки измеряется триллионными долями секунды, а энергопотребление в тысячи раз меньше по сравнению с традиционными методами вычислительной нейронной обработки. Эти показатели особенно важны в условиях растущего объёма передаваемой информации и возросших требований к энергоэффективности.

Некоторые ограничения связаны с тем, что каждому чипу необходима индивидуальная настройка под конкретную задачу, а дефекты в его микроскопических слоях могут приводить к отклонениям в работе. Тем не менее разработчики прогнозируют применение такого подхода в эндоскопии и, возможно, в будущем — в области квантовых вычислений. По их словам, технология обещает открыть невиданные ранее возможности.

Сочетание крошечного формата, способности работать с фотонными потоками и пониженных энергорастрат делают эти чипы ключевым шагом вперёд на пути к более быстрым, эффективным и компактным системам анализа больших массивов оптических данных. Исследователи полагают, что дальнейшая оптимизация обеспечит "беспрецедентные функциональные возможности" для фотонных решений завтрашнего дня.


Новое на сайте

17900Сможет ли закон догнать искусственный интеллект, предлагающий психотерапию? 17899Цепная реакция заражения листерией из-за одного поставщика 17898Холодный расчет: как современная наука изменила правила стирки 17897Деревянная начинка: массовый отзыв корн-догов из-за угрозы травм 17896Случайное открытие, спасшее 500 миллионов жизней 17895Мастерство мобильной съемки: полное руководство по камере iPhone 17894Что мог рассказать личный набор инструментов охотника эпохи палеолита? 17893Почему крупнейшая звездная колыбель млечного пути производит непропорционально много... 17892Обречены ли мы есть инжир с мертвыми осами внутри? 17891Почему AI-помощникам выгодно лгать, а не признавать незнание? 17890Является ли творчество искусственного интеллекта предсказуемым недостатком? 17889Как каланы цепляются за надежду? 17888Расшифрованный код древнего Египта 17887Звук без компромиссов: выбор лучших активных полочных колонок 2025 года 17886Зеленая немочь: загадочная болезнь девственниц, исчезнувшая из медицины