Ssylka

Эффективная оценка LLM: метрики, инструменты и стратегии

Оценка больших языковых моделей (LLM) – это непрерывный итеративный процесс, критически важный для оптимизации производительности и практического применения LLM-систем. Необходимо различать оценку LLM-модели и LLM-системы, учитывая, что ответственность за качество работы системы лежит как на модели, так и на разработчиках, подбирающих промты, механизмы извлечения данных и архитектуру.
Эффективная оценка LLM: метрики, инструменты и стратегии
Изображение носит иллюстративный характер

Офлайн-оценка, проводимая на заранее подготовленных датасетах, важна для контроля качества перед развертыванием, выявления проблем, и проведения регрессионного анализа. Для повышения масштабируемости процесса оценки можно использовать саму LLM для генерации оценочных датасетов. Онлайн-оценка позволяет анализировать производительность модели в реальных условиях эксплуатации, используя данные пользователей и обратную связь.

Разнообразие фреймворков и инструментов оценки, таких как Azure AI Studio Evaluation, Prompt Flow, Weights & Biases, LangSmith, TruLens, Vertex AI Studio, Amazon Bedrock, DeepEval, Parea AI, предлагает разработчикам широкий спектр возможностей для всестороннего анализа. При этом важна адаптация метрик оценки под конкретные сценарии применения, например, машинный перевод (BLEU, METEOR), анализ настроений (точность, полнота, F1-оценка), суммаризация (ROUGE, BERTScore), Q&A (QAEval, QAFactEval), NER (точность, полнота, InterpretEval), Text-to-SQL (точность полного соответствия, точность выполнения) и система извлечения RAG (верность, релевантность ответа, точность контекста).

Ответственное использование ИИ (RAI) имеет первостепенное значение, требующее оценки LLM-приложений с помощью заранее подготовленных вопросов по категориям, таким как вредоносный контент, справедливость, регулирование, конфиденциальность, галлюцинации и другие. Необходимо учитывать этические аспекты, минимизировать риски, и обеспечивать безопасное использование LLM.


Новое на сайте

18999Почему внедрение ИИ-агентов создает скрытые каналы для несанкционированной эскалации... 18998Космический детектив: сверхмассивная черная дыра обрекла галактику Пабло на голодную... 18997Аномальная «звезда-зомби» RXJ0528+2838 генерирует необъяснимую радужную ударную волну 18996Эйрена против Ареса: изобретение богини мира в разгар бесконечных войн древней Греции 18995Новые методы кибератак: эксплуатация GitKraken, Facebook-фишинг и скрытые туннели... 18994Как Уилл Смит рисковал жизнью ради науки в новом глобальном путешествии? 18993Как потеря 500 миллионов фунтов привела к рождению науки о трении? 18992Как критические уязвимости в FortiSIEM и FortiFone позволяют злоумышленникам получить... 18991Что рассказывает самый полный скелет Homo habilis об эволюции человека? 18990Почему 64% сторонних приложений получают необоснованный доступ к конфиденциальным данным? 18989Почему обновление Microsoft за январь 2026 года критически важно из-за активных атак на... 18988Необычный клинический случай: решение судоку провоцировало эпилептические припадки у... 18987Почему критическая уязвимость CVE-2025-59466 угрожает каждому приложению на Node.js? 18986Продвинутая кампания веб-скимминга маскируется под Stripe и скрывается от администраторов 18985Каким образом расширение «MEXC API Automator» опустошает счета пользователей биржи MEXC?