Ssylka

Могут ли LLM мыслить самостоятельно?

Новые "reasoning-модели», такие как DeepSeek-R1 и R1-Zero, демонстрируют способность решать сложные задачи через цепочку рассуждений, в отличие от простых текстовых генераторов. DeepSeek-R1-Zero особенно интересна тем, что обучается исключительно методом reinforcement learning (RL), без использования размеченных человеком данных.
Могут ли LLM мыслить самостоятельно?
Изображение носит иллюстративный характер

Ключевой особенностью DeepSeek-R1-Zero является применение алгоритма GRPO (Group Relative Policy Optimization), который позволяет отказаться от отдельной reward-модели, обычно требующей больших вычислительных ресурсов. GRPO оценивает качество ответов на основе сравнения группы сгенерированных вариантов, что экономит ресурсы и снижает риск «обмана» reward-модели.

В процессе обучения DeepSeek-R1-Zero наблюдается интересный эффект – "Aha-moment", когда модель спонтанно начинает включать рефлексию и самопроверку в свои рассуждения, значительно удлиняя цепочку логических выводов. При этом читабельность этих рассуждений может снижаться, поскольку модель использует смешение языков и другие нетрадиционные подходы, важным остается правильный результат.

DeepSeek-R1, в отличие от Zero-версии, использует многоэтапное обучение, включающее supervised fine-tuning (SFT) на специально подготовленных данных, а также RL. Это позволяет достичь более высокой читаемости рассуждений и лучших метрик, чем у DeepSeek-R1-Zero. После обучения R1 также проходит дистилляцию в небольшие модели, которые показывают лучшие результаты, чем если бы их учили как R1.


Новое на сайте

19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии? 19152Культ священного манго и закат эпохи хунвейбинов в маоистском Китае 19151Готовы ли вы к эре коэффициента адаптивности, когда IQ и EQ больше не гарантируют успех? 19150Иранская группировка RedKitten применяет сгенерированный нейросетями код для кибершпионажа