Ssylka

Революционный прорыв в материаловедении: супрананоинженерия открывает путь к сверхпрочным материалам

В современной инженерии существует фундаментальное противоречие: чем прочнее материал, тем менее он пластичен. Это особенно актуально для конструкционных металлов, таких как сталь и титан, где увеличение прочности традиционно достигается за счет снижения способности материала к деформации перед разрушением. Однако, новаторский подход, известный как супрананоинженерия, демонстрирует возможность одновременного повышения как прочности, так и пластичности металлических материалов, открывая беспрецедентные перспективы для целого ряда отраслей.
Революционный прорыв в материаловедении: супрананоинженерия открывает путь к сверхпрочным материалам
Изображение носит иллюстративный характер

Суть супрананоинженерии заключается в прецизионном управлении внутренней структурой зерен и границами зерен мелкозернистых сплавов на супранано уровне – масштабе, не превышающем 10 нанометров. Этот революционный метод позволяет целенаправленно изменять свойства материалов, преодолевая ограничения традиционных технологий.

Пионером этого направления является профессор Лу Цзянь, декан Инженерного колледжа Гонконгского городского университета (CityUHK). Под его руководством, в тесном сотрудничестве с исследовательскими группами, возглавляемыми бывшими докторантами и постдоками профессора Лу Цзяня, ныне профессорами и ведущими исследователями в Сианьском транспортном университете, был достигнут значительный прорыв в области супранано-двухфазных структур.

В качестве объекта исследования был выбран многокомпонентный сплав металлов, что стало развитием предыдущих работ по супранано магниевым сплавам. Применение супранано упорядочения позволило достичь непрерывного увеличения предела текучести материала вплоть до момента разрушения. Результаты экспериментов поражают: сплав продемонстрировал предел прочности на разрыв в 2.6 гигапаскалей (ГПа) при 10% деформации. Для сравнения, предел текучести традиционных наноструктурированных мелкозернистых сплавов обычно не превышает 1.5 – 2 ГПа.

Профессор Лу Цзянь объясняет достигнутые результаты уникальным механизмом супранано упорядочения. Он отмечает, что супранано структуры оказывают усиленное «тормозящее» воздействие на дислокации и дефекты упаковки. Это существенно замедляет движение дислокаций и дефектов упаковки, приводя к их усиленному взаимодействию и запутыванию. В результате, при нагружении материала происходит активное размножение и накопление дефектов.

Важным фактором является равномерное распределение супранано структур с преципитатами внутри зерен. Это, в свою очередь, обеспечивает равномерное распределение возникающих дефектов, эффективно предотвращая локализацию деформации. Такой механизм приводит к комплементарному усилению прочности и пластичности материала, способствуя высокому коэффициенту деформационного упрочнения и значительному удлинению при разрыве.

Значение полученных результатов трудно переоценить. Впервые продемонстрирована реальная возможность преодоления извечного компромисса между прочностью и пластичностью материалов с помощью супрананоинженерии. Фактически, достигнута «пластификация сплавов с прочностью 2.6 ГПа», что открывает принципиально новые горизонты в материаловедении.

Разработанная технология и созданные материалы обладают огромным потенциалом для применения в самых разных отраслях промышленности. Аэрокосмическая отрасль, автомобилестроение, индустрия 3C (компьютеры, коммуникации и бытовая электроника), строительство – это лишь некоторые области, где сверхпрочные и пластичные сплавы могут произвести революцию. Более широкий спектр приложений обусловлен универсальностью улучшенных характеристик материалов.


Новое на сайте

18883Четыреста колец в туманности эмбрион раскрыли тридцатилетнюю тайну звездной эволюции 18882Телескоп Джеймс Уэбб раскрыл тайны сверхэффективной звездной фабрики стрелец B2 18881Математический анализ истинного количества сквозных отверстий в человеческом теле 18880Почему даже элитные суперраспознаватели проваливают тесты на выявление дипфейков без... 18879Шесть легендарных древних городов и столиц империй, местоположение которых до сих пор... 18878Обзор самых необычных медицинских диагнозов и клинических случаев 2025 года 18877Критическая уязвимость CVE-2025-14847 в MongoDB открывает удаленный доступ к памяти... 18876Научное обоснование классификации солнца как желтого карлика класса G2V 18875Как безграничная преданность горным гориллам привела Дайан Фосси к жестокой гибели? 18874Новый родственник спинозавра из Таиланда меняет представления об эволюции хищников Азии 18873Как новая электрохимическая технология позволяет удвоить добычу водорода и снизить... 18872Могут ли ледяные гиганты Уран и Нептун на самом деле оказаться каменными? 18871Внедрение вредоносного кода в расширение Trust Wallet привело к хищению 7 миллионов... 18870Проверка клинического мышления на основе редких медицинских случаев 2025 года 18869Реконструкция черепа возрастом 1,5 миллиона лет меняет представление об эволюции Homo...