Могут ли LLM заменить специалистов по кибербезопасности?

Большие языковые модели (LLM) активно внедряются в кибербезопасность, демонстрируя успехи в автоматизации поиска, анализа и исправления уязвимостей. Эксперименты показывают, что LLM способны самостоятельно эксплуатировать уязвимости с высокой вероятностью успеха и даже генерировать последовательность шагов для атак. Однако, несмотря на эти достижения, LLM остаются непредсказуемыми, выдавая разные результаты при повторных запусках и давая некорректные описания уязвимостей.
Могут ли LLM заменить специалистов по кибербезопасности?
Изображение носит иллюстративный характер

Для оценки возможностей LLM в кибербезопасности исследователи разрабатывают специализированные фреймворки, такие как SecLLMHolmes, eyeballvul и LLM4Vuln. Эти фреймворки помогают анализировать способность моделей находить уязвимости в различных контекстах, дополнять информацию о них и имитировать реальные сценарии атак. Кроме того, существуют наборы задач, такие как Cybench и XBOW Validation Benchmarks, которые помогают более точно оценивать возможности LLM.

LLM находят применение не только в поиске уязвимостей, но и в других областях кибербезопасности. Они используются для анализа защищенности, ускорения разработки имплантов, а также для выявления ключевых изменений в релизах, что позволяет сократить объем ручной проверки. LLM также помогают в разработке правил обнаружения угроз, генерируя их на основе описаний техник атак.

Несмотря на значительный потенциал LLM в кибербезопасности, они все еще далеки от полной автономности. Они скорее выступают в роли ассистентов, помогающих специалистам, но не заменяющих их. LLM часто сталкиваются с проблемами при работе со сложными зависимостями, не могут правильно интерпретировать контекст и выдают некорректные исправления уязвимостей. Тем не менее, дальнейшее развитие технологий и создание новых методик оценки позволят преодолеть эти ограничения и приблизить нас к созданию более автономных систем кибербезопасности на основе LLM.


Новое на сайте

19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии? 19152Культ священного манго и закат эпохи хунвейбинов в маоистском Китае 19151Готовы ли вы к эре коэффициента адаптивности, когда IQ и EQ больше не гарантируют успех? 19150Иранская группировка RedKitten применяет сгенерированный нейросетями код для кибершпионажа
Ссылка