Интеграция компьютерного зрения в Android-фреймворке Simple: новые возможности

Фреймворк Simple получил значительное обновление в части компьютерного зрения (CV), где ActiveCV теперь является полноценным элементом экрана, подобно кнопке или надписи, что позволяет совмещать логику экранов и обработку видеопотока. ActiveCV представляет собой методологию автоматизации бизнес-процессов, при которой необходимые данные отображаются непосредственно в видеопотоке, с использованием различных детекторов (штрихкодов, OCR, лиц и др.), позволяя оператору работать непрерывно без переключения между экранами.
Интеграция компьютерного зрения в Android-фреймворке Simple: новые возможности
Изображение носит иллюстративный характер

Ключевым элементом ActiveCV является цветовая маркировка объектов, обеспечивающая быструю передачу информации оператору: зеленый цвет указывает на соответствие, красный – на несоответствие, желтый – на приближение к критическому значению, что оказалось более эффективным, чем текстовая информация. Новая версия ActiveCV включает возможность одновременного использования нескольких детекторов, их плавного переключения и настройки без перезагрузки камеры. Детекторы подключаются слоями и используют единый механизм датасетов для валидации и получения информации об объектах, что увеличивает скорость и снижает нагрузку на обработчики.

В обновленной версии ActiveCV внедрены новые возможности: пауза камеры, управление зумом, фонариком, а также гибкая настройка цветовой маркировки, выбор типа штрихкодов, и улучшенный OCR с Regex-масками, а также настраиваемая предобработка и постобработка, что позволило повысить производительность системы. Теперь компонент ActiveCV полностью заменяет экранные элементы Штрихкод, Фото и Распознавание текста. Примеры использования включают сбор остатков (с проверкой по базе), показ остатков на складе, проверку сроков годности товаров с использованием OCR для распознавания дат и штрихкодов.

Механизмы работы включают размещение элемента ActiveCV, настройку разрешения, управление циклом детекторов, отображение объектов с возможностью изменения их внешнего вида, ручное управление списком детектированных объектов, подключение валидаторов для всех типов детекторов, управление зумом, остановку видеопотока и работу с фонариком. Для штрихкодов можно задавать список поддерживаемых и текущих форматов. OCR поддерживает предобработку текста, Regex-маски и валидацию, обеспечивая гибкую и быструю обработку данных. Также добавлена возможность перерисовки контейнера без перезагрузки камеры, события по закрытию диалогов и работа с датасетами. В планах добавить рамки для «прицела» OCR, а также интеграцию OpenCV, PyTorch и моделей машинного обучения на Python.


Новое на сайте

19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии? 19152Культ священного манго и закат эпохи хунвейбинов в маоистском Китае 19151Готовы ли вы к эре коэффициента адаптивности, когда IQ и EQ больше не гарантируют успех? 19150Иранская группировка RedKitten применяет сгенерированный нейросетями код для кибершпионажа
Ссылка