Ssylka

Как управлять самоорганизацией коллоидных частиц в реальном времени?

Коллоидная самоорганизация представляет собой процесс, при котором коллоидные частицы спонтанно формируют упорядоченные структуры. Этот процесс лежит в основе создания передовых материалов, включая оптоэлектронные устройства и сенсоры. Однако до недавнего времени ученые сталкивались с серьезной проблемой: как обеспечить точный контроль над динамическим поведением активных коллоидных систем в реальном времени.
Как управлять самоорганизацией коллоидных частиц в реальном времени?
Изображение носит иллюстративный характер

Исследовательская группа под руководством профессора Вэй Вана из Харбинского технологического института (Шэньчжэнь) совместно с доктором Си Ченом из Чэндуского технологического университета разработала революционный подход к решению этой проблемы. Результаты их работы были опубликованы в престижном научном журнале Research.

Новая стратегия объединяет химические реакции и электрическую поляризацию, что позволяет достичь обратимой сборки и регулирования структур коллоидных частиц непосредственно в процессе их формирования. Такой комбинированный подход открывает беспрецедентные возможности для создания динамически изменяемых материалов.

Техническое решение, предложенное учеными, основано на использовании как активных, так и пассивных коллоидных частиц в единой системе. Активные частицы вступают в реакцию с химическими веществами, создавая химический градиент. Этот градиент вызывает явления форезиса и осмоса, в результате чего пассивные частицы притягиваются к активным, формируя кластеры.

Одновременно с этим исследователи применяют переменное электрическое поле, которое поляризует пассивные частицы. Это создает диполь-дипольные отталкивающие силы, обеспечивающие сборку частиц в определенные конфигурации. Тонкая настройка химических и электрических полей позволяет с высокой точностью контролировать процесс самоорганизации.

«Наш подход демонстрирует, как можно достичь беспрецедентного уровня контроля над коллоидными системами, комбинируя различные физические и химические механизмы», — отмечает профессор Вэй Ван, подчеркивая уникальность разработанного метода.

Потенциальные применения этой технологии впечатляют своим разнообразием. Она может быть использована для создания коллоидных материалов, способных динамически изменять свою структуру и функции в ответ на внешние стимулы. Такие материалы найдут применение в разработке чувствительных сенсоров, самовосстанавливающихся систем и реконфигурируемых устройств.

Исследование открывает новую главу в области коллоидной науки, предлагая инструменты для создания «программируемых» материалов, которые могут адаптироваться к изменяющимся условиям и требованиям. Это особенно важно для развития «умных» материалов следующего поколения, которые смогут найти применение в медицине, электронике и энергетике.


Новое на сайте

18590Является ли ИИ-архитектура, имитирующая мозг, недостающим звеном на пути к AGI? 18589Как Operation Endgame нанесла сокрушительный удар по глобальной киберпреступности? 18588Кибервойна на скорости машин: почему защита должна стать автоматической к 2026 году 18587Как одна ошибка в коде открыла для хакеров 54 000 файрволов WatchGuard? 18586Криптовалютный червь: как десятки тысяч фейковых пакетов наводнили npm 18585Портативный звук JBL по рекордно низкой цене 18584Воин-крокодил триаса: находка в Бразилии связала континенты 18583Опиум как повседневность древнего Египта 18582Двойной удар по лекарственно-устойчивой малярии 18581Почему взрыв массивной звезды асимметричен в первые мгновения? 18580Почему самые удобные для поиска жизни звезды оказались наиболее враждебными? 18579Смертоносные вспышки красных карликов угрожают обитаемым мирам 18578Почему самый активный подводный вулкан тихого океана заставил ученых пересмотреть дату... 18577Вспышка на солнце сорвала запуск ракеты New Glenn к Марсу 18576Как фишинг-платформа Lighthouse заработала миллиард долларов и почему Google подала на...