Ssylka

Может ли измерение "ничего" охладить квантовую систему?

Исследователи из Имперского колледжа Лондона, Оксфордского университета, Университета Ватерлоо, Университета Лидса и Университета Копенгагена продемонстрировали удивительное явление в области квантовой физики. Они обнаружили, что измерение отсутствия рассеянных фотонов — фактически «измерение ничего» — может уменьшить колебательное движение (звуковые волны) в крошечной стеклянной микросфере ниже комнатной температуры.
Может ли измерение "ничего" охладить квантовую систему?
Изображение носит иллюстративный характер

Объектом исследования выступила стеклянная микросфера, всего в четыре раза шире человеческого волоса. Эта микросфера функционирует как «резонатор шепчущей галереи» — термин, происходящий от знаменитой Шепчущей галереи в соборе Святого Павла в Лондоне, где звук может циркулировать вдоль стен. В экспериментальной установке микросфера непрерывно отражает и удерживает как световые, так и высокочастотные звуковые волны вокруг своей окружности достаточно долго, чтобы они могли взаимодействовать между собой. Благодаря этому удержанию, световые и звуковые волны становятся коррелированными, делая измерения света информативными о состоянии звука.

Команда из Квантовой измерительной лаборатории Имперского колледжа Лондона использовала однофотонные детекторы для измерения того, был ли рассеян ровно один фотон или ни одного фотона звуковой волной в каждый момент времени. Удивительно, но когда фотоны не обнаруживались (событие «нулевого фотона»), последующие независимые измерения показывали, что звуковые волны в микросфере становились «тише» обычного — то есть движение охлаждалось. И наоборот, когда обнаруживался одиночный фотон, звуковые волны становились «громче».

Эван Крайер-Дженкинс, один из соавторов исследования, отметил: «Этот результат, безусловно, был удивительным поначалу. Однако он имеет смысл... информация, полученная от измерения, позволяет дополнительно охладить состояние звуковой волны».

Джек Кларк, еще один соавтор, добавил: «Хотя на первый взгляд это кажется нелогичным, обновление наших знаний о мире после того, как мы заметили, что чего-то нет, на самом деле является чем-то, что мы делаем каждый день...»

Исследование было опубликовано в двух научных журналах: Physical Review Letters и Physical Review A. Более того, предварительная публикация работы на arXiv была отмечена журналом New Scientist и стала подзаголовком на обложке печатного выпуска.

Арджун Гупта, также соавтор исследования, подчеркнул: «Квантовое измерение — это увлекательная тема, и я уверен, что впереди нас ждут дальнейшие открытия».

Кайл Мейджор, еще один из соавторов, отметил практическое значение открытия: «Использование детектирования нулевых фотонов для охлаждения квантовых систем до их основного состояния поможет в разработке квантовых компьютеров и квантовых сетей... было здорово увидеть, как предварительная публикация нашего исследования была подхвачена New Scientist и стала подзаголовком на обложке печатного журнала».

Метод охлаждения, основанный на измерениях, развивает традиционные методы лазерного охлаждения (обычно применяемые к атомам и ионам), чтобы продвинуть охлаждение за пределы типичных ограничений, используя детектирование «отсутствия фотонов».

Главный исследователь Майкл Р. Ваннер из Квантовой измерительной лаборатории Имперского колледжа Лондона подвел итог: «Эти результаты являются важной вехой для нашей команды и предоставляют мощную новую технику для управления квантовыми системами. Мы рады видеть, как детектирование нулевых фотонов поможет работе нашей лаборатории и более широкому научному сообществу».

Центральное открытие исследования заключается в том, что даже отсутствие рассеянного фотона (детектирование нулевого фотона) представляет собой информативное измерение, позволяющее усилить охлаждение колебательного движения, демонстрируя новый метод управления квантовыми системами.


Новое на сайте