Квантовая когерентность: от теории к прорывным технологиям будущего

В основе современных квантовых технологий лежит фундаментальное свойство – когерентность, определяющее способность системы сохранять согласованность и предсказуемость поведения. Мартин Холт, ученый из Аргоннской национальной лаборатории, подчеркивает особую роль этого явления в развитии квантовых вычислений и сенсоров.
Квантовая когерентность: от теории к прорывным технологиям будущего
Изображение носит иллюстративный характер

Волновая когерентность проявляется в согласованном поведении волн, создающих характерные интерференционные картины. Наиболее известные примеры – лазеры с когерентным излучением света и звуковые лазеры (сазеры). Этот же принцип используется в шумоподавляющих наушниках, где звуковые волны гасят друг друга.

Квантовая когерентность существенно сложнее – она описывает способность частиц находиться одновременно в нескольких состояниях согласно волновой функции. Это явление крайне чувствительно к внешним воздействиям и наблюдению, что создает серьезные технические вызовы.

Исследовательский центр Q-NEXT, возглавляемый Аргоннской лабораторией, активно развивает квантовые сенсоры. Дженнифер Дионн, заместитель директора Q-NEXT из Стэнфордского университета, отмечает широкий спектр применений: от детекторов гравитационных волн до миниатюрных МРТ и биологических навигационных систем.

В квантовых вычислениях когерентность позволяет кубитам существовать в суперпозиции состояний, что радикально превосходит возможности классических битов. Недавно ученым из Аргоннской лаборатории и Чикагского университета удалось достичь пятисекундной когерентности в полупроводниковом кубите – важный шаг к практическим квантовым компьютерам.

Для сохранения квантовой когерентности используются сверхнизкие температуры, близкие к абсолютному нулю, манипуляции частотами и тщательная изоляция от внешних воздействий. Наиболее стабильными считаются кубиты на основе захваченных атомов, хотя активно разрабатываются и другие типы – на основе материи и полупроводников.

Основные проблемы в работе с квантовой когерентностью связаны с декогеренцией – потерей квантовых свойств из-за взаимодействия с окружением, чувствительностью к измерениям и сложностью длительного сохранения квантовой информации. Решение этих задач открывает путь к революционным технологиям будущего.


Новое на сайте

19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии? 19152Культ священного манго и закат эпохи хунвейбинов в маоистском Китае 19151Готовы ли вы к эре коэффициента адаптивности, когда IQ и EQ больше не гарантируют успех? 19150Иранская группировка RedKitten применяет сгенерированный нейросетями код для кибершпионажа
Ссылка