Ssylka

Когда Гессиан не нужен: альтернативный взгляд на оценку неопределенности в машинном обучении

Традиционные методы оценки неопределенности, использующие аппроксимацию Лапласа с вычислением Гессиана, часто оказываются ресурсозатратными и не всегда точными. Альтернативный подход, заменяющий Гессиан на единичную матрицу, может обеспечить более эффективное и точное определение неопределенности модели. Этот метод, получивший название Identity Curvature Laplace Approximation (ICLA), показывает сравнимые и даже лучшие результаты по сравнению с классическими методами аппроксимации Лапласа, а также некоторыми небайесовскими подходами, особенно в задачах обнаружения аномалий (out-of-distribution detection).
Когда Гессиан не нужен: альтернативный взгляд на оценку неопределенности в машинном обучении
Изображение носит иллюстративный характер

Аппроксимация Лапласа, использующая информацию о кривизне параметров модели (Гессиане), для оценки дисперсии распределения, является мощным инструментом в машинном обучении. Однако, вычисление Гессиана, требующее значительных вычислительных ресурсов, становится проблематичным для нейронных сетей с большим количеством параметров. Попытки аппроксимации Гессиана, такие как матрица Фишера или K-FAC, не всегда приводят к удовлетворительным результатам. В то же время, ICLA, использующий простую единичную матрицу вместо Гессиана, оказывается удивительно эффективным.

Исследования показали, что эффективность ICLA напрямую связана со сложностью данных, определяемой как средняя поклассовая косинусная близость кластеров эмбеддингов (MCCS). На датасетах с высокой разделимостью классов традиционная аппроксимация Лапласа работает хуже, чем ICLA. Это связано с тем, что Гессиан имеет спектральное распределение с длинным хвостом, что не соответствует структуре ковариации классов в таких данных. Таким образом, отказ от информации о кривизне (Гессиане) может не только ускорить вычисления, но и повысить точность оценки неопределенности.

В итоге, ICLA, заменяя Гессиан на единичную матрицу, демонстрирует значительное улучшение в оценке неопределенности модели, особенно на сложных данных с высокой разделимостью классов. Этот метод не только упрощает вычисления, но и позволяет создавать более безопасные и надежные системы машинного обучения, способные адекватно оценивать свою неуверенность в сложных и изменчивых условиях.


Новое на сайте

19019Действительно ли «зомби-клетки» провоцируют самую распространенную форму эпилепсии и... 19018Генетический анализ мумий гепардов из саудовской Аравии открыл путь к возрождению... 19017Вредоносная кампания в Chrome перехватывает управление HR-системами и блокирует... 19016Глубоководные оползни раскрыли историю мегаземлетрясений зоны Каскадия за 7500 лет 19015Насколько глубоки ваши познания об эволюции и происхождении человека? 19014Как уязвимость CodeBreach в AWS CodeBuild могла привести к глобальной атаке через ошибку... 19013Затерянный фрагмент древней плиты пионер меняет карту сейсмических угроз Калифорнии 19012Генетические мутации вызывают слепоту менее чем в 30% случаев вопреки прежним прогнозам 19011Завершено строительство космического телескопа Nancy Grace Roman для поиска ста тысяч... 19010Вязкость пространства и фононы вакуума как разгадка аномалий расширения вселенной 19009Приведет ли массовое плодоношение дерева Риму к рекордному росту популяции какапо? 19008Как уязвимость CVE-2026-23550 в плагине Modular DS позволяет захватить управление сайтом? 19007Может ли уличная драка французского авантюриста раскрыть кризис американского гражданства... 19006Может ли один клик по легитимной ссылке заставить Microsoft Copilot и другие ИИ тайно... 19005Утрата истинного мастерства в эпоху алгоритмов и скрытые механизмы человеческого...