Ssylka

Когда Гессиан не нужен: альтернативный взгляд на оценку неопределенности в машинном обучении

Традиционные методы оценки неопределенности, использующие аппроксимацию Лапласа с вычислением Гессиана, часто оказываются ресурсозатратными и не всегда точными. Альтернативный подход, заменяющий Гессиан на единичную матрицу, может обеспечить более эффективное и точное определение неопределенности модели. Этот метод, получивший название Identity Curvature Laplace Approximation (ICLA), показывает сравнимые и даже лучшие результаты по сравнению с классическими методами аппроксимации Лапласа, а также некоторыми небайесовскими подходами, особенно в задачах обнаружения аномалий (out-of-distribution detection).
Когда Гессиан не нужен: альтернативный взгляд на оценку неопределенности в машинном обучении
Изображение носит иллюстративный характер

Аппроксимация Лапласа, использующая информацию о кривизне параметров модели (Гессиане), для оценки дисперсии распределения, является мощным инструментом в машинном обучении. Однако, вычисление Гессиана, требующее значительных вычислительных ресурсов, становится проблематичным для нейронных сетей с большим количеством параметров. Попытки аппроксимации Гессиана, такие как матрица Фишера или K-FAC, не всегда приводят к удовлетворительным результатам. В то же время, ICLA, использующий простую единичную матрицу вместо Гессиана, оказывается удивительно эффективным.

Исследования показали, что эффективность ICLA напрямую связана со сложностью данных, определяемой как средняя поклассовая косинусная близость кластеров эмбеддингов (MCCS). На датасетах с высокой разделимостью классов традиционная аппроксимация Лапласа работает хуже, чем ICLA. Это связано с тем, что Гессиан имеет спектральное распределение с длинным хвостом, что не соответствует структуре ковариации классов в таких данных. Таким образом, отказ от информации о кривизне (Гессиане) может не только ускорить вычисления, но и повысить точность оценки неопределенности.

В итоге, ICLA, заменяя Гессиан на единичную матрицу, демонстрирует значительное улучшение в оценке неопределенности модели, особенно на сложных данных с высокой разделимостью классов. Этот метод не только упрощает вычисления, но и позволяет создавать более безопасные и надежные системы машинного обучения, способные адекватно оценивать свою неуверенность в сложных и изменчивых условиях.


Новое на сайте

18247Зачем мозг в фазе быстрого сна стирает детали воспоминаний? 18246Мог ли древний яд стать решающим фактором в эволюции человека? 18245Тайна колодца Мурсы: раны и днк раскрыли судьбу павших солдат 18244Битва за миллиардный сэндвич без корочки 18243Почему ваши расширения для VS Code могут оказаться шпионским по? 18242Как подать заявку FAFSA на 2026-27 учебный год и получить финансовую помощь? 18241Мог ли взлом F5 раскрыть уязвимости нулевого дня в продукте BIG-IP? 18240CVS завершает поглощение активов обанкротившейся сети Rite Aid 18239Nvidia, BlackRock и Microsoft покупают основу для глобального ИИ за $40 миллиардов 18238Действительно ли только род Homo создавал орудия труда? 18237Инженерный триумф: сотрудник Rivian вырастил тыкву-победителя 18236Процент с прибыли: как инвесторы создали новый источник финансирования для... 18235Почему синхронизируемые ключи доступа открывают двери для кибератак на предприятия?