Ssylka

LLM в разработке: препятствия и перспективы

Применение больших языковых моделей (LLM) в разработке программного обеспечения сталкивается с фундаментальными проблемами. LLM предоставляются как единый, неразборный продукт, что противоречит принципу декомпозиции задач на составные части, который является краеугольным камнем вычислительной техники. Невозможность тестирования, модификации и контроля над внутренними процессами LLM ограничивает их применение в качестве надежных компонентов программных продуктов.
LLM в разработке: препятствия и перспективы
Изображение носит иллюстративный характер

Проблемы с безопасностью, конфиденциальностью и юридической ответственностью также препятствуют широкому распространению LLM. Отсутствие прозрачности в обучении моделей и невозможность гарантировать, что они не используют чужие разработки, затрудняют интеграцию LLM в коммерческие решения. Кроме того, огромные вычислительные затраты на обучение LLM идут вразрез с тенденцией к снижению углеродного следа.

Вместо того, чтобы полагаться на LLM как на готовые сервисы, разработчикам следует стремиться к созданию искусственного интеллекта, который можно проверить, воспроизвести, объяснить и модифицировать. Ошибки ИИ должны быть исправимы, а его процессы должны быть прозрачными. Использование LLM в их текущем виде может привести к потере контроля над технологическим процессом и замедлить инновации.

Адаптация LLM под нужды конкретных компаний, например, дообучение на их уникальных данных, является перспективным направлением. Такой подход позволяет компаниям создавать корпоративных ИИ-ассистентов, способных работать с конфиденциальной информацией. Одним из способов такого дообучения является In-Context fine-tuning, объединяющий методы RAG и fine-tuning, который позволяет обучать модели на примерах запросов и ответов, создавая ассистентов без необходимости написания кода.


Новое на сайте

18666Почему мы отрицаем реальность, когда искусственный интеллект уже лишил нас когнитивного... 18665Химический след Тейи раскрыл тайну происхождения луны в ранней солнечной системе 18664Раскрывает ли извергающаяся межзвездная комета 3I/ATLAS химические тайны древней... 18663Масштабная кампания ShadyPanda заразила миллионы браузеров через официальные обновления 18662Как помидорные бои и персонажи Pixar помогают лидерам превратить корпоративную культуру 18661Как астероид 2024 YR4 стал первой исторической проверкой системы планетарной защиты и... 18660Агентные ИИ-браузеры как троянский конь новой эры кибербезопасности 18659Многовековая история изучения приливов от античных гипотез до синтеза Исаака Ньютона 18658Как выглядела защита от солнца римских легионеров в Египте 1600 лет назад? 18657Хакеры ToddyCat обновили арсенал для тотального взлома Outlook и Microsoft 365 18656Асимметрия безопасности: почему многомиллионные вложения в инструменты детекции не... 18655Как безопасно использовать репозитории Chocolatey и Winget, не подвергая инфраструктуру... 18654Масштабная утечка конфиденциальных данных через популярные онлайн-форматеры кода 18653Как расширение списка жертв взлома Gainsight связано с запуском вымогателя ShinySp1d3r 18652Как расширение Crypto Copilot незаметно похищает средства пользователей Solana на...