LLM в разработке: препятствия и перспективы

Применение больших языковых моделей (LLM) в разработке программного обеспечения сталкивается с фундаментальными проблемами. LLM предоставляются как единый, неразборный продукт, что противоречит принципу декомпозиции задач на составные части, который является краеугольным камнем вычислительной техники. Невозможность тестирования, модификации и контроля над внутренними процессами LLM ограничивает их применение в качестве надежных компонентов программных продуктов.
LLM в разработке: препятствия и перспективы
Изображение носит иллюстративный характер

Проблемы с безопасностью, конфиденциальностью и юридической ответственностью также препятствуют широкому распространению LLM. Отсутствие прозрачности в обучении моделей и невозможность гарантировать, что они не используют чужие разработки, затрудняют интеграцию LLM в коммерческие решения. Кроме того, огромные вычислительные затраты на обучение LLM идут вразрез с тенденцией к снижению углеродного следа.

Вместо того, чтобы полагаться на LLM как на готовые сервисы, разработчикам следует стремиться к созданию искусственного интеллекта, который можно проверить, воспроизвести, объяснить и модифицировать. Ошибки ИИ должны быть исправимы, а его процессы должны быть прозрачными. Использование LLM в их текущем виде может привести к потере контроля над технологическим процессом и замедлить инновации.

Адаптация LLM под нужды конкретных компаний, например, дообучение на их уникальных данных, является перспективным направлением. Такой подход позволяет компаниям создавать корпоративных ИИ-ассистентов, способных работать с конфиденциальной информацией. Одним из способов такого дообучения является In-Context fine-tuning, объединяющий методы RAG и fine-tuning, который позволяет обучать модели на примерах запросов и ответов, создавая ассистентов без необходимости написания кода.


Новое на сайте

19188Критическая уязвимость в решениях BeyondTrust спровоцировала глобальную волну кражи... 19187Эволюция угроз: атака на цепочку поставок ИИ-ассистента Cline CLI через уязвимость... 19186Как фальшивая проверка Cloudflare в кампании ClickFix скрыто внедряет новый троян... 19185Почему гендерно-нейтральные корпоративные политики становятся главным инструментом... 19184Как искусственный интеллект уничтожил временной зазор между обнаружением уязвимости и... 19183Банковский троян Massiv маскируется под IPTV для захвата контроля над Android 19182Как шпионская кампания CRESCENTHARVEST использует социальную инженерию для кражи данных... 19181Как критическая уязвимость в телефонах Grandstream открывает хакерам доступ к... 19180Почему операционная непрерывность становится единственным ответом на перманентную... 19179Критические уязвимости в популярных расширениях VS Code угрожают миллионам разработчиков 19178Как внедрить интеллектуальные рабочие процессы и почему 88% проектов ИИ терпят неудачу? 19177Критическая уязвимость нулевого дня в Dell RecoverPoint открывает злоумышленникам полный... 19176Notepad++ внедряет механизм двойной блокировки для защиты от атак группировки Lotus Panda 19175Новые угрозы в каталоге CISA: от критических дыр в Chrome и Zimbra до возвращения червя... 19174Использование чат-ботов Copilot и Grok в качестве скрытых прокси-серверов для управления...
Ссылка