Ssylka

LLM в разработке: препятствия и перспективы

Применение больших языковых моделей (LLM) в разработке программного обеспечения сталкивается с фундаментальными проблемами. LLM предоставляются как единый, неразборный продукт, что противоречит принципу декомпозиции задач на составные части, который является краеугольным камнем вычислительной техники. Невозможность тестирования, модификации и контроля над внутренними процессами LLM ограничивает их применение в качестве надежных компонентов программных продуктов.
LLM в разработке: препятствия и перспективы
Изображение носит иллюстративный характер

Проблемы с безопасностью, конфиденциальностью и юридической ответственностью также препятствуют широкому распространению LLM. Отсутствие прозрачности в обучении моделей и невозможность гарантировать, что они не используют чужие разработки, затрудняют интеграцию LLM в коммерческие решения. Кроме того, огромные вычислительные затраты на обучение LLM идут вразрез с тенденцией к снижению углеродного следа.

Вместо того, чтобы полагаться на LLM как на готовые сервисы, разработчикам следует стремиться к созданию искусственного интеллекта, который можно проверить, воспроизвести, объяснить и модифицировать. Ошибки ИИ должны быть исправимы, а его процессы должны быть прозрачными. Использование LLM в их текущем виде может привести к потере контроля над технологическим процессом и замедлить инновации.

Адаптация LLM под нужды конкретных компаний, например, дообучение на их уникальных данных, является перспективным направлением. Такой подход позволяет компаниям создавать корпоративных ИИ-ассистентов, способных работать с конфиденциальной информацией. Одним из способов такого дообучения является In-Context fine-tuning, объединяющий методы RAG и fine-tuning, который позволяет обучать модели на примерах запросов и ответов, создавая ассистентов без необходимости написания кода.


Новое на сайте

18607Золотой распад кометы ATLAS C/2025 K1 18606Секретный бренд древнего Рима на стеклянных шедеврах 18605Смогут ли чипсы без искусственных красителей сохранить свой знаменитый вкус? 18604Является ли рекордная скидка на Garmin Instinct 3 Solar лучшим предложением ноября? 18603Могла ли детская смесь ByHeart вызвать национальную вспышку ботулизма? 18602Готовы ли банки доверить агентскому ИИ управление деньгами клиентов? 18601Как сезонные ветры создают миллионы загадочных полос на Марсе? 18600Как тело человека превращается в почву за 90 дней? 18599Как ваш iPhone может заменить паспорт при внутренних перелетах по США? 18598Мозговой шторм: что происходит, когда мозг отключается от усталости 18597Раскрыта асимметричная форма рождения сверхновой 18596Скидки Ninja: как получить идеальную корочку и сэкономить на доставке 18595Почему работа на нескольких работах становится новой нормой? 18594Записная книжка против нейросети: ценность медленного мышления 18593Растущая брешь в магнитном щите земли