Ssylka

Как создать электромагнитные метаматериалы без механического давления?

В области материаловедения произошел значительный прорыв в создании электромагнитных метаматериалов. В 2010 году журнал Materials Today признал эти материалы одним из десяти важнейших достижений в материаловедении за последние 50 лет.
Как создать электромагнитные метаматериалы без механического давления?
Изображение носит иллюстративный характер

Исследовательская группа под руководством Лудзе Ванга из Института химической физики Ланьчжоу Китайской академии наук разработала инновационный метод создания метаматериалов без применения механического давления. В работе также участвовали ученые из Шанхайского института керамики и Шаньдунского университета науки и технологий.

Новый метод использует частицы вольфрама в качестве второй фазы и позволяет достичь уплотнения материала без механического прессования. При содержании вольфрама 20% по объему материал демонстрирует отрицательную диэлектрическую проницаемость в диапазоне частот 40-50 МГц.

Традиционные методы, такие как спекание под давлением, имели существенные недостатки: низкую производственную эффективность, ограничения по форме и размеру продукта, недостаточную прочность. Метод пористой пропитки также оказался неэффективным из-за необходимости высокой пористости, что ухудшало механические свойства.

Нитрид кремния, используемый в новой технологии, обладает уникальным набором характеристик: высокой теплопроводностью, термостойкостью, коррозионной стойкостью и превосходными механическими свойствами. Эти качества делают материал особенно ценным для промышленного применения.

Метаматериалы обладают необычными свойствами, включая отрицательный показатель преломления, возможность создания идеальных изображений и суперпоглощение. Это открывает широкие перспективы их применения в оптической маскировке, беспроводной связи и электромагнитном экранировании.

Результаты исследования, опубликованные в Journal of Advanced Ceramics, демонстрируют потенциал новой технологии для промышленного производства метаматериалов, способных работать в условиях высоких нагрузок, окисления и коррозии.


Новое на сайте

16950Физический движок в голове: как мозг разделяет твердые предметы и текучие вещества 16949Скрыты ли в нашей днк ключи к лечению ожирения и последствий инсульта? 16948Почему символ американской свободы был приговорен к уничтожению? 16947Рукотворное убежище для исчезающих амфибий 16946Какую тайну хранит жестокая жизнь и загадочная смерть сестер каменного века? 16945Скрывает ли Плутон экваториальный пояс из гигантских ледяных клинков? 16944Взгляд на зарю вселенной телескопом Джеймса Уэбба 16943От сада чудес до протеина из атмосферы 16942Кратковременный сон наяву: научное объяснение пустоты в мыслях 16941Спутники Starlink создают непреднамеренную угрозу для радиоастрономии 16940Аутентификационная чума: бэкдор Plague год оставался невидимым 16939Фиолетовый страж тайских лесов: редкий краб-принцесса явился миру 16938Хроники мангровых лесов: победители фотоконкурса 2025 года 16937Танцевали ли планеты солнечной системы идеальный вальс? 16936Ай-ай: причудливый лемур, проклятый своим пальцем