Ssylka

Как создать идеальный температурный датчик для экстремальных условий?

В области высокотемпературных измерений долгое время существовала серьезная проблема – отсутствие надежных термочувствительных датчиков, способных стабильно работать в экстремальных условиях. Традиционные материалы показывали неудовлетворительные результаты при высоких температурах.
Как создать идеальный температурный датчик для экстремальных условий?
Изображение носит иллюстративный характер

Исследователи из Синьцзянского технического института физики и химии Китайской академии наук разработали революционное решение – высокоэнтропийную термочувствительную керамику на основе редкоземельных ниобатов (ReNbO4) со структурой ферргусонитового типа. Ключевой особенностью материала стало использование регулирования кислородных вакансий.

Новый материал демонстрирует впечатляющие характеристики в широком температурном диапазоне от 223 К до 1423 К. При длительных испытаниях в течение 1000 часов отклонение показаний составило менее 1%. Температурный коэффициент достигает 0.223%/K при 1423 К, что является исключительным показателем для столь высоких температур.

Инновационный подход заключается в использовании многокомпонентной системы, где стабилизация энтропии достигается легированием редкоземельными ионами в A-позициях и аллавалентным допированием ионами Sr²⁺. Это приводит к увеличению концентрации кислородных вакансий.

Усовершенствованная структура материала обеспечивает улучшенные свойства электронного транспорта и повышенную стабильность решетки. Формирование двойниковых доменов, искажения решетки и динамическая реконструкция способствуют уникальным характеристикам материала.

По сравнению с существующими решениями, новая керамика обладает превосходной термической и химической стабильностью, лучшей адаптируемостью к условиям окружающей среды и улучшенной линейностью температурно-резистивной характеристики.

Разработка открывает новые возможности для создания термочувствительной керамики и находит применение в экстремальных условиях, таких как авиационные двигатели и термические системы транспортных средств на новых источниках энергии. Результаты исследования опубликованы в авторитетном научном журнале Small.


Новое на сайте

16950Физический движок в голове: как мозг разделяет твердые предметы и текучие вещества 16949Скрыты ли в нашей днк ключи к лечению ожирения и последствий инсульта? 16948Почему символ американской свободы был приговорен к уничтожению? 16947Рукотворное убежище для исчезающих амфибий 16946Какую тайну хранит жестокая жизнь и загадочная смерть сестер каменного века? 16945Скрывает ли Плутон экваториальный пояс из гигантских ледяных клинков? 16944Взгляд на зарю вселенной телескопом Джеймса Уэбба 16943От сада чудес до протеина из атмосферы 16942Кратковременный сон наяву: научное объяснение пустоты в мыслях 16941Спутники Starlink создают непреднамеренную угрозу для радиоастрономии 16940Аутентификационная чума: бэкдор Plague год оставался невидимым 16939Фиолетовый страж тайских лесов: редкий краб-принцесса явился миру 16938Хроники мангровых лесов: победители фотоконкурса 2025 года 16937Танцевали ли планеты солнечной системы идеальный вальс? 16936Ай-ай: причудливый лемур, проклятый своим пальцем