В области высокотемпературных измерений долгое время существовала серьезная проблема – отсутствие надежных термочувствительных датчиков, способных стабильно работать в экстремальных условиях. Традиционные материалы показывали неудовлетворительные результаты при высоких температурах.

Исследователи из Синьцзянского технического института физики и химии Китайской академии наук разработали революционное решение – высокоэнтропийную термочувствительную керамику на основе редкоземельных ниобатов (ReNbO4) со структурой ферргусонитового типа. Ключевой особенностью материала стало использование регулирования кислородных вакансий.
Новый материал демонстрирует впечатляющие характеристики в широком температурном диапазоне от 223 К до 1423 К. При длительных испытаниях в течение 1000 часов отклонение показаний составило менее 1%. Температурный коэффициент достигает 0.223%/K при 1423 К, что является исключительным показателем для столь высоких температур.
Инновационный подход заключается в использовании многокомпонентной системы, где стабилизация энтропии достигается легированием редкоземельными ионами в A-позициях и аллавалентным допированием ионами Sr²⁺. Это приводит к увеличению концентрации кислородных вакансий.
Усовершенствованная структура материала обеспечивает улучшенные свойства электронного транспорта и повышенную стабильность решетки. Формирование двойниковых доменов, искажения решетки и динамическая реконструкция способствуют уникальным характеристикам материала.
По сравнению с существующими решениями, новая керамика обладает превосходной термической и химической стабильностью, лучшей адаптируемостью к условиям окружающей среды и улучшенной линейностью температурно-резистивной характеристики.
Разработка открывает новые возможности для создания термочувствительной керамики и находит применение в экстремальных условиях, таких как авиационные двигатели и термические системы транспортных средств на новых источниках энергии. Результаты исследования опубликованы в авторитетном научном журнале Small.

Изображение носит иллюстративный характер
Исследователи из Синьцзянского технического института физики и химии Китайской академии наук разработали революционное решение – высокоэнтропийную термочувствительную керамику на основе редкоземельных ниобатов (ReNbO4) со структурой ферргусонитового типа. Ключевой особенностью материала стало использование регулирования кислородных вакансий.
Новый материал демонстрирует впечатляющие характеристики в широком температурном диапазоне от 223 К до 1423 К. При длительных испытаниях в течение 1000 часов отклонение показаний составило менее 1%. Температурный коэффициент достигает 0.223%/K при 1423 К, что является исключительным показателем для столь высоких температур.
Инновационный подход заключается в использовании многокомпонентной системы, где стабилизация энтропии достигается легированием редкоземельными ионами в A-позициях и аллавалентным допированием ионами Sr²⁺. Это приводит к увеличению концентрации кислородных вакансий.
Усовершенствованная структура материала обеспечивает улучшенные свойства электронного транспорта и повышенную стабильность решетки. Формирование двойниковых доменов, искажения решетки и динамическая реконструкция способствуют уникальным характеристикам материала.
По сравнению с существующими решениями, новая керамика обладает превосходной термической и химической стабильностью, лучшей адаптируемостью к условиям окружающей среды и улучшенной линейностью температурно-резистивной характеристики.
Разработка открывает новые возможности для создания термочувствительной керамики и находит применение в экстремальных условиях, таких как авиационные двигатели и термические системы транспортных средств на новых источниках энергии. Результаты исследования опубликованы в авторитетном научном журнале Small.