Исследователи из Чикагского университета совершили прорыв в области хранения информации, предложив использовать дефекты кристаллической решетки в качестве носителей данных. Команда ученых под руководством Леонардо Франса и Тянь Чжуна разработала инновационный метод, позволяющий записывать информацию в микроскопические пустоты кристаллов.

Основой технологии служит кристалл оксида иттрия, легированный празеодимом. В его структуре создаются контролируемые дефекты – вакансии, способные находиться в двух различных состояниях, что позволяет использовать их как биты информации, хранящие нули и единицы двоичного кода.
Для управления состоянием дефектов применяется ультрафиолетовый лазер, который может «заряжать» и «разряжать» вакансии, изменяя их энергетическое состояние. Этот процесс происходит на атомарном уровне, что обеспечивает беспрецедентную плотность записи – до миллиарда ячеек памяти на один кубический миллиметр кристалла.
Подобный принцип хранения информации уже используется в дозиметрах, где дефекты кристаллов накапливают данные о полученной дозе радиации. Однако новая технология позволяет осуществлять контролируемую запись и считывание информации, что открывает перспективы создания компьютерной памяти нового поколения.
Исследования проводятся в Школе молекулярной инженерии Притцкера при Чикагском университете. Несмотря на то, что технология использует квантовые эффекты, она не является квантовой памятью в классическом понимании, а представляет собой принципиально новый подход к хранению данных.
Ключевую роль в работе устройства играют редкоземельные элементы, внедренные в кристаллическую решетку. Они обеспечивают стабильность дефектов и возможность надежного управления их состоянием, что критически важно для долговременного хранения информации.
Хотя до коммерческого применения технологии еще далеко, она обещает революционные изменения в сфере хранения данных. Потенциальные устройства на основе дефектов кристаллов смогут сочетать компактность, энергоэффективность и высочайшую плотность записи информации.

Изображение носит иллюстративный характер
Основой технологии служит кристалл оксида иттрия, легированный празеодимом. В его структуре создаются контролируемые дефекты – вакансии, способные находиться в двух различных состояниях, что позволяет использовать их как биты информации, хранящие нули и единицы двоичного кода.
Для управления состоянием дефектов применяется ультрафиолетовый лазер, который может «заряжать» и «разряжать» вакансии, изменяя их энергетическое состояние. Этот процесс происходит на атомарном уровне, что обеспечивает беспрецедентную плотность записи – до миллиарда ячеек памяти на один кубический миллиметр кристалла.
Подобный принцип хранения информации уже используется в дозиметрах, где дефекты кристаллов накапливают данные о полученной дозе радиации. Однако новая технология позволяет осуществлять контролируемую запись и считывание информации, что открывает перспективы создания компьютерной памяти нового поколения.
Исследования проводятся в Школе молекулярной инженерии Притцкера при Чикагском университете. Несмотря на то, что технология использует квантовые эффекты, она не является квантовой памятью в классическом понимании, а представляет собой принципиально новый подход к хранению данных.
Ключевую роль в работе устройства играют редкоземельные элементы, внедренные в кристаллическую решетку. Они обеспечивают стабильность дефектов и возможность надежного управления их состоянием, что критически важно для долговременного хранения информации.
Хотя до коммерческого применения технологии еще далеко, она обещает революционные изменения в сфере хранения данных. Потенциальные устройства на основе дефектов кристаллов смогут сочетать компактность, энергоэффективность и высочайшую плотность записи информации.