Ssylka

Как измерить квантовое состояние фотоэлектронов?

Исследователи Лундского университета в Швеции совершили прорыв в области квантовой физики, разработав новую методику измерения квантового состояния электронов, выбиваемых из атомов под действием высокоэнергетических световых импульсов.
Как измерить квантовое состояние фотоэлектронов?
Изображение носит иллюстративный характер

Когда высокоэнергетический свет в диапазоне экстремального ультрафиолета или рентгеновского излучения попадает на атом или молекулу, он может выбить электрон. Этот процесс, известный как фотоэлектрический эффект, лежит в основе фотоэлектронной спектроскопии. Традиционно фотоэлектрон рассматривался как классическая частица, хотя в действительности это квантовый объект, требующий квантово-механического описания.

Новая методика, названная KRAKEN, позволяет измерять полное квантовое состояние фотоэлектрона. Принцип работы схож с компьютерной томографией в медицине: делается серия двумерных «снимков» с разных углов для реконструкции трехмерного объекта. В эксперименте атомы ионизируются сверхкороткими высокоэнергетическими световыми импульсами, а затем пара лазерных импульсов разных цветов используется для получения двумерных снимков.

Дэвид Бусто, доцент кафедры атомной физики Лундского университета и соавтор исследования, опубликованного в Nature Photonics, отмечает историческую значимость работы. Более века назад Альберт Эйнштейн объяснил фотоэлектрический эффект, заложив основы квантовой механики. В 1981 году Кай Зигбан получил Нобелевскую премию за развитие фотоэлектронной спектроскопии.

Впервые удалось измерить квантовое состояние электронов, испускаемых атомами гелия и аргона. Исследователи обнаружили, что квантовое состояние фотоэлектрона зависит от материала, из которого он выбивается. Эта методика открывает новые возможности для изучения молекулярных газов, жидкостей и твердых тел.

Потенциальные применения включают исследования атмосферной фотохимии и систем преобразования света, таких как солнечные элементы и фотосинтез. Работа объединяет достижения аттосекундной науки и спектроскопии с квантовой информатикой и технологиями.

Успех эксперимента особенно примечателен тем, что предыдущие попытки измерения квантового состояния сталкивались с проблемой необходимости экстремальной стабильности в течение длительных периодов. Исследователям в Лунде удалось достичь требуемых стабильных условий, что открывает новую главу в понимании взаимодействия света и материи на квантовом уровне.


Новое на сайте

15287Жидкость, восстанавливающая форму: нарушение законов термодинамики 15286Аркадия ведьм: загадка Чарльза годфри Леланда и её влияние на современную магию 15285Кто станет новым героем Звёздных войн в 2027 году? 15283Ануше Ансари | Почему космические исследования важны для Земли 15282Гизем Гумбуская | Синтетический морфогенез: самоконструирующиеся живые архитектуры по... 15281Как предпринимателю остаться хозяином своей судьбы? 15280Люси: путешествие к древним обломкам солнечной системы 15279Роберт Лиллис: извлеченные уроки для экономически эффективных исследований дальнего... 15278Почему супермен до сих пор остаётся символом надежды и морали? 15277Райан Гослинг в роли нового героя «Звёздных войн»: что известно о фильме Star Wars:... 15276Почему экваториальная Гвинея остаётся одной из самых закрытых и жестоких диктатур мира? 15275Почему морские слизни становятся ярче под солнцем? 15274Глен Вейль | Можем ли мы использовать ИИ для построения более справедливого общества? 15273Лириды: где и как увидеть древний звездопад в этом апреле? 15272Сдержит ли налог на однодневных туристов в Венеции наплыв гостей?