Как измерить квантовое состояние фотоэлектронов?

Исследователи Лундского университета в Швеции совершили прорыв в области квантовой физики, разработав новую методику измерения квантового состояния электронов, выбиваемых из атомов под действием высокоэнергетических световых импульсов.
Как измерить квантовое состояние фотоэлектронов?
Изображение носит иллюстративный характер

Когда высокоэнергетический свет в диапазоне экстремального ультрафиолета или рентгеновского излучения попадает на атом или молекулу, он может выбить электрон. Этот процесс, известный как фотоэлектрический эффект, лежит в основе фотоэлектронной спектроскопии. Традиционно фотоэлектрон рассматривался как классическая частица, хотя в действительности это квантовый объект, требующий квантово-механического описания.

Новая методика, названная KRAKEN, позволяет измерять полное квантовое состояние фотоэлектрона. Принцип работы схож с компьютерной томографией в медицине: делается серия двумерных «снимков» с разных углов для реконструкции трехмерного объекта. В эксперименте атомы ионизируются сверхкороткими высокоэнергетическими световыми импульсами, а затем пара лазерных импульсов разных цветов используется для получения двумерных снимков.

Дэвид Бусто, доцент кафедры атомной физики Лундского университета и соавтор исследования, опубликованного в Nature Photonics, отмечает историческую значимость работы. Более века назад Альберт Эйнштейн объяснил фотоэлектрический эффект, заложив основы квантовой механики. В 1981 году Кай Зигбан получил Нобелевскую премию за развитие фотоэлектронной спектроскопии.

Впервые удалось измерить квантовое состояние электронов, испускаемых атомами гелия и аргона. Исследователи обнаружили, что квантовое состояние фотоэлектрона зависит от материала, из которого он выбивается. Эта методика открывает новые возможности для изучения молекулярных газов, жидкостей и твердых тел.

Потенциальные применения включают исследования атмосферной фотохимии и систем преобразования света, таких как солнечные элементы и фотосинтез. Работа объединяет достижения аттосекундной науки и спектроскопии с квантовой информатикой и технологиями.

Успех эксперимента особенно примечателен тем, что предыдущие попытки измерения квантового состояния сталкивались с проблемой необходимости экстремальной стабильности в течение длительных периодов. Исследователям в Лунде удалось достичь требуемых стабильных условий, что открывает новую главу в понимании взаимодействия света и материи на квантовом уровне.


Новое на сайте

19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии? 19152Культ священного манго и закат эпохи хунвейбинов в маоистском Китае 19151Готовы ли вы к эре коэффициента адаптивности, когда IQ и EQ больше не гарантируют успех? 19150Иранская группировка RedKitten применяет сгенерированный нейросетями код для кибершпионажа
Ссылка