Ssylka

Как суперрешётки Cu₂O₁₋ₓ с вакансиями кислорода усиливают поверхностный плазмонный резонанс

В публикации «Учёные усиливают локальный поверхностный плазмонный резонанс посредством суперрешёток из оксидных наночастиц», выполненной под руководством профессора Ян Лянбао из Хэфэйского института физических наук Китайской академии наук и размещённой в журнале Nano Letters, описаны результаты, показывающие заметное усиление плазмонных мод в специально синтезированных структурах Cu₂O₁₋ₓ.
Как суперрешётки Cu₂O₁₋ₓ с вакансиями кислорода усиливают поверхностный плазмонный резонанс
Изображение носит иллюстративный характер

Локальный поверхностный плазмонный резонанс представляет собой коллективное колебание свободных электронов в металлических наночастицах, что даёт заметный отклик на строго определённые длины волн. Его успешное применение включает биосенсорику с более высокой чувствительностью, фотокатализ с улучшенной скоростью световых реакций, управление цветом и эффективную утилизацию энергии из оптического излучения.

Исследуемые суперрешётки Cu₂O₁₋ₓ образованы оксидными наночастицами меди с дефицитом кислорода. Важным фактором считается вакансия кислорода, которая способна влиять на электронную структуру полупроводника. За счёт продуманного процесса синтеза получены материалы с высокой концентрацией таких вакансий, что обеспечивает формирование интенсивных локальных плазмонных состояний в оксидных наночастицах.

Эксперименты продемонстрировали сдвиг валентной зоны ближе к уровню Ферми, а также уменьшение ширины запрещённой зоны в данных суперрешётках. Это стало возможным благодаря увеличению концентрации носителей заряда, вызванному обилием вакансий кислорода. Подобные изменения в электронной структуре позволяют формировать заметно усиленный резонанс между свободными электронами и внешним электромагнитным полем.

Наблюдались выраженные внутризонные переходы, дополнительно усиливающие локализованное поле и повышающие эффективность материалов в методе поверхностно-усиленного комбинационного рассеяния (SERS). Такая высокая интенсивность колебаний электронов делает Cu₂O₁₋ₓ суперрешётки крайне перспективными для новых сенсорных систем, где требуется усиление сигнала на молекулярном уровне.

Полученные результаты демонстрируют свежий подход к управлению плазмонным резонансом за счёт точечного регулирования дефектов и концентрации носителей заряда в оксидных материалах. Это открывает широкие возможности в разработке полупроводниковых нанostruktur для датчиков и фотокаталитических устройств, где необходима прямая настройка оптических свойств за счёт вакансий кислорода.


Новое на сайте

18884Знаете ли вы, что приматы появились до вымирания динозавров, и готовы ли проверить свои... 18883Четыреста колец в туманности эмбрион раскрыли тридцатилетнюю тайну звездной эволюции 18882Телескоп Джеймс Уэбб раскрыл тайны сверхэффективной звездной фабрики стрелец B2 18881Математический анализ истинного количества сквозных отверстий в человеческом теле 18880Почему даже элитные суперраспознаватели проваливают тесты на выявление дипфейков без... 18879Шесть легендарных древних городов и столиц империй, местоположение которых до сих пор... 18878Обзор самых необычных медицинских диагнозов и клинических случаев 2025 года 18877Критическая уязвимость CVE-2025-14847 в MongoDB открывает удаленный доступ к памяти... 18876Научное обоснование классификации солнца как желтого карлика класса G2V 18875Как безграничная преданность горным гориллам привела Дайан Фосси к жестокой гибели? 18874Новый родственник спинозавра из Таиланда меняет представления об эволюции хищников Азии 18873Как новая электрохимическая технология позволяет удвоить добычу водорода и снизить... 18872Могут ли ледяные гиганты Уран и Нептун на самом деле оказаться каменными? 18871Внедрение вредоносного кода в расширение Trust Wallet привело к хищению 7 миллионов... 18870Проверка клинического мышления на основе редких медицинских случаев 2025 года