В публикации «Учёные усиливают локальный поверхностный плазмонный резонанс посредством суперрешёток из оксидных наночастиц», выполненной под руководством профессора Ян Лянбао из Хэфэйского института физических наук Китайской академии наук и размещённой в журнале Nano Letters, описаны результаты, показывающие заметное усиление плазмонных мод в специально синтезированных структурах Cu₂O₁₋ₓ.
![Как суперрешётки Cu₂O₁₋ₓ с вакансиями кислорода усиливают поверхностный плазмонный резонанс](/images/topic/9026.jpg)
Локальный поверхностный плазмонный резонанс представляет собой коллективное колебание свободных электронов в металлических наночастицах, что даёт заметный отклик на строго определённые длины волн. Его успешное применение включает биосенсорику с более высокой чувствительностью, фотокатализ с улучшенной скоростью световых реакций, управление цветом и эффективную утилизацию энергии из оптического излучения.
Исследуемые суперрешётки Cu₂O₁₋ₓ образованы оксидными наночастицами меди с дефицитом кислорода. Важным фактором считается вакансия кислорода, которая способна влиять на электронную структуру полупроводника. За счёт продуманного процесса синтеза получены материалы с высокой концентрацией таких вакансий, что обеспечивает формирование интенсивных локальных плазмонных состояний в оксидных наночастицах.
Эксперименты продемонстрировали сдвиг валентной зоны ближе к уровню Ферми, а также уменьшение ширины запрещённой зоны в данных суперрешётках. Это стало возможным благодаря увеличению концентрации носителей заряда, вызванному обилием вакансий кислорода. Подобные изменения в электронной структуре позволяют формировать заметно усиленный резонанс между свободными электронами и внешним электромагнитным полем.
Наблюдались выраженные внутризонные переходы, дополнительно усиливающие локализованное поле и повышающие эффективность материалов в методе поверхностно-усиленного комбинационного рассеяния (SERS). Такая высокая интенсивность колебаний электронов делает Cu₂O₁₋ₓ суперрешётки крайне перспективными для новых сенсорных систем, где требуется усиление сигнала на молекулярном уровне.
Полученные результаты демонстрируют свежий подход к управлению плазмонным резонансом за счёт точечного регулирования дефектов и концентрации носителей заряда в оксидных материалах. Это открывает широкие возможности в разработке полупроводниковых нанostruktur для датчиков и фотокаталитических устройств, где необходима прямая настройка оптических свойств за счёт вакансий кислорода.
![Как суперрешётки Cu₂O₁₋ₓ с вакансиями кислорода усиливают поверхностный плазмонный резонанс](/images/topic/9026.jpg)
Изображение носит иллюстративный характер
Локальный поверхностный плазмонный резонанс представляет собой коллективное колебание свободных электронов в металлических наночастицах, что даёт заметный отклик на строго определённые длины волн. Его успешное применение включает биосенсорику с более высокой чувствительностью, фотокатализ с улучшенной скоростью световых реакций, управление цветом и эффективную утилизацию энергии из оптического излучения.
Исследуемые суперрешётки Cu₂O₁₋ₓ образованы оксидными наночастицами меди с дефицитом кислорода. Важным фактором считается вакансия кислорода, которая способна влиять на электронную структуру полупроводника. За счёт продуманного процесса синтеза получены материалы с высокой концентрацией таких вакансий, что обеспечивает формирование интенсивных локальных плазмонных состояний в оксидных наночастицах.
Эксперименты продемонстрировали сдвиг валентной зоны ближе к уровню Ферми, а также уменьшение ширины запрещённой зоны в данных суперрешётках. Это стало возможным благодаря увеличению концентрации носителей заряда, вызванному обилием вакансий кислорода. Подобные изменения в электронной структуре позволяют формировать заметно усиленный резонанс между свободными электронами и внешним электромагнитным полем.
Наблюдались выраженные внутризонные переходы, дополнительно усиливающие локализованное поле и повышающие эффективность материалов в методе поверхностно-усиленного комбинационного рассеяния (SERS). Такая высокая интенсивность колебаний электронов делает Cu₂O₁₋ₓ суперрешётки крайне перспективными для новых сенсорных систем, где требуется усиление сигнала на молекулярном уровне.
Полученные результаты демонстрируют свежий подход к управлению плазмонным резонансом за счёт точечного регулирования дефектов и концентрации носителей заряда в оксидных материалах. Это открывает широкие возможности в разработке полупроводниковых нанostruktur для датчиков и фотокаталитических устройств, где необходима прямая настройка оптических свойств за счёт вакансий кислорода.