Как визуализировать, что именно видит нейросеть YOLO NAS S при распознавании объектов?

Class Activation Maps (CAM) позволяют понять, какие области изображения наиболее важны для модели при принятии решения, показывая, какие признаки извлекает модель на разных слоях свертки и как они влияют на прогноз конкретного класса. CAM можно реализовать вручную для задач классификации, используя сверточные нейросети.
Как визуализировать, что именно видит нейросеть YOLO NAS S при распознавании объектов?
Изображение носит иллюстративный характер

Архитектура YOLO NAS включает backbone, neck и head. Backbone извлекает признаки, neck передает их, а head принимает решение о классификации и локализации объекта. CAM строится на головах, так как оттуда можно извлечь веса, влияющие на прогноз. На backbone визуализируют активации. Для извлечения данных используют hook-методы PyTorch, «подключаясь» к слоям сети. При инференсе необходимо установить fuse_model=False, иначе информативность карт снижается.

Анализ показал, что с увеличением номера stage (уровня свертки) модель анализирует более крупные области. Медианные значения активаций различаются на ранних этапах, но стабилизируются на уровне голов. Локализация усиливается с увеличением номера головы, так как более поздние головы используют выходы более поздних stages, фокусируясь на более специфичных признаках.

CAM помогает визуализировать влияние входных данных на прогноз модели на каждом уровне архитектуры, глубже понять работу архитектуры и оценить стабильность модели. Анализ стабильности помогает выявить чувствительность модели к шуму и искажениям, повышая надежность моделей в реальных условиях.


Новое на сайте

19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии? 19152Культ священного манго и закат эпохи хунвейбинов в маоистском Китае 19151Готовы ли вы к эре коэффициента адаптивности, когда IQ и EQ больше не гарантируют успех? 19150Иранская группировка RedKitten применяет сгенерированный нейросетями код для кибершпионажа
Ссылка