Ssylka

Как визуализировать, что именно видит нейросеть YOLO NAS S при распознавании объектов?

Class Activation Maps (CAM) позволяют понять, какие области изображения наиболее важны для модели при принятии решения, показывая, какие признаки извлекает модель на разных слоях свертки и как они влияют на прогноз конкретного класса. CAM можно реализовать вручную для задач классификации, используя сверточные нейросети.
Как визуализировать, что именно видит нейросеть YOLO NAS S при распознавании объектов?
Изображение носит иллюстративный характер

Архитектура YOLO NAS включает backbone, neck и head. Backbone извлекает признаки, neck передает их, а head принимает решение о классификации и локализации объекта. CAM строится на головах, так как оттуда можно извлечь веса, влияющие на прогноз. На backbone визуализируют активации. Для извлечения данных используют hook-методы PyTorch, «подключаясь» к слоям сети. При инференсе необходимо установить fuse_model=False, иначе информативность карт снижается.

Анализ показал, что с увеличением номера stage (уровня свертки) модель анализирует более крупные области. Медианные значения активаций различаются на ранних этапах, но стабилизируются на уровне голов. Локализация усиливается с увеличением номера головы, так как более поздние головы используют выходы более поздних stages, фокусируясь на более специфичных признаках.

CAM помогает визуализировать влияние входных данных на прогноз модели на каждом уровне архитектуры, глубже понять работу архитектуры и оценить стабильность модели. Анализ стабильности помогает выявить чувствительность модели к шуму и искажениям, повышая надежность моделей в реальных условиях.


Новое на сайте

17902Lufthansa заменит 4000 административных сотрудников искусственным интеллектом 17901Каков истинный срок годности генетической информации? 17900Сможет ли закон догнать искусственный интеллект, предлагающий психотерапию? 17899Цепная реакция заражения листерией из-за одного поставщика 17898Холодный расчет: как современная наука изменила правила стирки 17897Деревянная начинка: массовый отзыв корн-догов из-за угрозы травм 17896Случайное открытие, спасшее 500 миллионов жизней 17895Мастерство мобильной съемки: полное руководство по камере iPhone 17894Что мог рассказать личный набор инструментов охотника эпохи палеолита? 17893Почему крупнейшая звездная колыбель млечного пути производит непропорционально много... 17892Обречены ли мы есть инжир с мертвыми осами внутри? 17891Почему AI-помощникам выгодно лгать, а не признавать незнание? 17890Является ли творчество искусственного интеллекта предсказуемым недостатком? 17889Как каланы цепляются за надежду? 17888Расшифрованный код древнего Египта