Ssylka

Как ускорить Python с Joblib: параллелизм, потоки и кэширование?

Joblib упрощает параллельные вычисления в Python, маскируя сложности многопоточности. Для задач, требующих интенсивных вычислений, Joblib применяет многопроцессорность, распределяя нагрузку между ядрами CPU, что обеспечивает более быструю обработку данных, по сравнению со стандартным multiprocessing. Например, для расчёта квадратных корней большого массива чисел, Joblib ускоряет процесс, разделяя вычисления между несколькими ядрами.
Как ускорить Python с Joblib: параллелизм, потоки и кэширование?
Изображение носит иллюстративный характер

Для задач, связанных с вводом/выводом или сетевыми запросами, использование потоков в Joblib оказывается более эффективным. В таких случаях, потоки позволяют Python работать более эффективно, так как не требуют интенсивных вычислительных ресурсов и связаны с операциями ожидания, вместо интенсивных вычислений. Переключение на потоки в Joblib, вместо использования процессов, осуществляется с помощью параметра prefer="threads".

Joblib также подходит для работы с очень большими объемами данных, которые не помещаются в оперативную память, используя так называемые memory-mapped files. Этот метод позволяет обрабатывать данные, не загружая их целиком в память, что особенно полезно при работе с крупными массивами данных. Joblib позволяет легко параллелизовать операции с такими данными, обрабатывая их кусками, без значительной нагрузки на оперативную память.

Использование кэширования в Joblib позволяет избежать повторных вычислений, сохраняя результаты предыдущих операций. Кэширование особенно полезно при выполнении повторяющихся и ресурсоёмких операций, позволяя ускорить работу программы, избегая ненужных вычислений. Функция @memory.cache в Joblib сохраняет результат дорогостоящей операции, возвращая кэшированное значение при повторном вызове.


Новое на сайте

18604Является ли рекордная скидка на Garmin Instinct 3 Solar лучшим предложением ноября? 18603Могла ли детская смесь ByHeart вызвать национальную вспышку ботулизма? 18602Готовы ли банки доверить агентскому ИИ управление деньгами клиентов? 18601Как сезонные ветры создают миллионы загадочных полос на Марсе? 18600Как тело человека превращается в почву за 90 дней? 18599Как ваш iPhone может заменить паспорт при внутренних перелетах по США? 18598Мозговой шторм: что происходит, когда мозг отключается от усталости 18597Раскрыта асимметричная форма рождения сверхновой 18596Скидки Ninja: как получить идеальную корочку и сэкономить на доставке 18595Почему работа на нескольких работах становится новой нормой? 18594Записная книжка против нейросети: ценность медленного мышления 18593Растущая брешь в магнитном щите земли 18592Каким образом блокчейн-транзакции стали новым инструментом для кражи криптовалюты? 18591Что скрывается за ростом прибыли The Walt Disney Company? 18590Является ли ИИ-архитектура, имитирующая мозг, недостающим звеном на пути к AGI?