Ssylka

Как ускорить Python с Joblib: параллелизм, потоки и кэширование?

Joblib упрощает параллельные вычисления в Python, маскируя сложности многопоточности. Для задач, требующих интенсивных вычислений, Joblib применяет многопроцессорность, распределяя нагрузку между ядрами CPU, что обеспечивает более быструю обработку данных, по сравнению со стандартным multiprocessing. Например, для расчёта квадратных корней большого массива чисел, Joblib ускоряет процесс, разделяя вычисления между несколькими ядрами.
Как ускорить Python с Joblib: параллелизм, потоки и кэширование?
Изображение носит иллюстративный характер

Для задач, связанных с вводом/выводом или сетевыми запросами, использование потоков в Joblib оказывается более эффективным. В таких случаях, потоки позволяют Python работать более эффективно, так как не требуют интенсивных вычислительных ресурсов и связаны с операциями ожидания, вместо интенсивных вычислений. Переключение на потоки в Joblib, вместо использования процессов, осуществляется с помощью параметра prefer="threads".

Joblib также подходит для работы с очень большими объемами данных, которые не помещаются в оперативную память, используя так называемые memory-mapped files. Этот метод позволяет обрабатывать данные, не загружая их целиком в память, что особенно полезно при работе с крупными массивами данных. Joblib позволяет легко параллелизовать операции с такими данными, обрабатывая их кусками, без значительной нагрузки на оперативную память.

Использование кэширования в Joblib позволяет избежать повторных вычислений, сохраняя результаты предыдущих операций. Кэширование особенно полезно при выполнении повторяющихся и ресурсоёмких операций, позволяя ускорить работу программы, избегая ненужных вычислений. Функция @memory.cache в Joblib сохраняет результат дорогостоящей операции, возвращая кэшированное значение при повторном вызове.


Новое на сайте