Как ускорить Python с Joblib: параллелизм, потоки и кэширование?

Joblib упрощает параллельные вычисления в Python, маскируя сложности многопоточности. Для задач, требующих интенсивных вычислений, Joblib применяет многопроцессорность, распределяя нагрузку между ядрами CPU, что обеспечивает более быструю обработку данных, по сравнению со стандартным multiprocessing. Например, для расчёта квадратных корней большого массива чисел, Joblib ускоряет процесс, разделяя вычисления между несколькими ядрами.
Как ускорить Python с Joblib: параллелизм, потоки и кэширование?
Изображение носит иллюстративный характер

Для задач, связанных с вводом/выводом или сетевыми запросами, использование потоков в Joblib оказывается более эффективным. В таких случаях, потоки позволяют Python работать более эффективно, так как не требуют интенсивных вычислительных ресурсов и связаны с операциями ожидания, вместо интенсивных вычислений. Переключение на потоки в Joblib, вместо использования процессов, осуществляется с помощью параметра prefer="threads".

Joblib также подходит для работы с очень большими объемами данных, которые не помещаются в оперативную память, используя так называемые memory-mapped files. Этот метод позволяет обрабатывать данные, не загружая их целиком в память, что особенно полезно при работе с крупными массивами данных. Joblib позволяет легко параллелизовать операции с такими данными, обрабатывая их кусками, без значительной нагрузки на оперативную память.

Использование кэширования в Joblib позволяет избежать повторных вычислений, сохраняя результаты предыдущих операций. Кэширование особенно полезно при выполнении повторяющихся и ресурсоёмких операций, позволяя ускорить работу программы, избегая ненужных вычислений. Функция @memory.cache в Joblib сохраняет результат дорогостоящей операции, возвращая кэшированное значение при повторном вызове.


Новое на сайте

19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии? 19152Культ священного манго и закат эпохи хунвейбинов в маоистском Китае 19151Готовы ли вы к эре коэффициента адаптивности, когда IQ и EQ больше не гарантируют успех? 19150Иранская группировка RedKitten применяет сгенерированный нейросетями код для кибершпионажа
Ссылка