В 1952 году британский математик Алан Тьюринг предложил теорию, объясняющую формирование пятен и полос у животных. Согласно его гипотезе, по мере развития тканей в них распространяются химические агенты. Этот процесс он сравнил с тем, как белое молоко расходится в черном кофе. Одни химические вещества активируют клетки, производящие пигмент, создавая узор, в то время как другие подавляют их, формируя промежутки.

Однако компьютерные симуляции, основанные исключительно на идее Тьюринга, имели существенный недостаток. Получаемые узоры, например пятна, всегда были более размытыми, чем те, что встречаются в природе. Это несоответствие указывало на то, что в механизме формирования рисунка на шкуре животных не хватало важного элемента.
Прорыв произошел в 2023 году благодаря работе команды во главе с Анкуром Гуптой, инженером-химиком из Университета Колорадо в Боулдере. Исследователи дополнили модель Тьюринга новым физическим процессом, который называется диффузиофорез. Суть этого явления заключается в том, что диффундирующие частицы способны увлекать за собой другие частицы.
Механизм диффузиофореза можно сравнить с тем, как мыло удаляет грязь с одежды. Молекулы мыла, распространяясь в воде, утягивают за собой частицы грязи, отделяя их от ткани. Для проверки новой модели ученые использовали узор рыбы-кузовка, обитающей у побережья Австралии. Ее тело покрыто четкими пурпурно-черными шестиугольниками.
Первые результаты показали, что диффузиофорез действительно позволил сгенерировать узоры с гораздо более резкими очертаниями, чем в оригинальной модели Тьюринга. Однако это привело к новой проблеме: смоделированные шестиугольники оказались «слишком идеальными». Все они были одинакового размера и формы с абсолютно идентичным расстоянием между ними, что не соответствует природным вариациям, наблюдаемым как у кузовка, так и у других животных, например, в толщине полос у зебры.
Окончательное решение было найдено после публикации исследования в журнале Matter. Ученые усовершенствовали модель, наделив отдельные клетки определенным размером, а затем смоделировали, как каждая из них движется сквозь ткань. Этот процесс они описали с помощью аналогии «шаров в трубе».
Более крупные клетки, сравнимые с баскетбольными или шарами для боулинга, группируются вместе, образуя более толстые и широкие элементы узора. Мелкие клетки, подобные мячам для гольфа или пинг-понга, формируют более тонкие очертания. Когда клетки разных размеров сталкиваются, они могут создавать «пробку», которая и приводит к разрывам в полосах или линиях.
«Мы можем запечатлеть эти несовершенства и текстуры, просто придав этим клеткам размер», — объясняет Анкур Гупта. Новые симуляции успешно воспроизвели разрывы, вариации в толщине и зернистую текстуру, которые полностью соответствуют реальным узорам, наблюдаемым в природе.
Теперь исследователи планируют использовать более сложные взаимодействия между клетками и химическими агентами для дальнейшего повышения точности симуляций. Понимание этого механизма открывает широкие перспективы для практического применения.
Одним из направлений является материаловедение. Инженеры смогут разрабатывать материалы, способные изменять свой цвет в зависимости от окружающей среды, имитируя кожу хамелеона.
Другая потенциальная область применения — медицина. Полученные знания могут помочь в создании более эффективных методов доставки лекарств к определенным участкам тела.
«Мы черпаем вдохновение в несовершенной красоте природной системы и надеемся использовать эти несовершенства для создания новых функциональных возможностей в будущем», — заключает Гупта.

Изображение носит иллюстративный характер
Однако компьютерные симуляции, основанные исключительно на идее Тьюринга, имели существенный недостаток. Получаемые узоры, например пятна, всегда были более размытыми, чем те, что встречаются в природе. Это несоответствие указывало на то, что в механизме формирования рисунка на шкуре животных не хватало важного элемента.
Прорыв произошел в 2023 году благодаря работе команды во главе с Анкуром Гуптой, инженером-химиком из Университета Колорадо в Боулдере. Исследователи дополнили модель Тьюринга новым физическим процессом, который называется диффузиофорез. Суть этого явления заключается в том, что диффундирующие частицы способны увлекать за собой другие частицы.
Механизм диффузиофореза можно сравнить с тем, как мыло удаляет грязь с одежды. Молекулы мыла, распространяясь в воде, утягивают за собой частицы грязи, отделяя их от ткани. Для проверки новой модели ученые использовали узор рыбы-кузовка, обитающей у побережья Австралии. Ее тело покрыто четкими пурпурно-черными шестиугольниками.
Первые результаты показали, что диффузиофорез действительно позволил сгенерировать узоры с гораздо более резкими очертаниями, чем в оригинальной модели Тьюринга. Однако это привело к новой проблеме: смоделированные шестиугольники оказались «слишком идеальными». Все они были одинакового размера и формы с абсолютно идентичным расстоянием между ними, что не соответствует природным вариациям, наблюдаемым как у кузовка, так и у других животных, например, в толщине полос у зебры.
Окончательное решение было найдено после публикации исследования в журнале Matter. Ученые усовершенствовали модель, наделив отдельные клетки определенным размером, а затем смоделировали, как каждая из них движется сквозь ткань. Этот процесс они описали с помощью аналогии «шаров в трубе».
Более крупные клетки, сравнимые с баскетбольными или шарами для боулинга, группируются вместе, образуя более толстые и широкие элементы узора. Мелкие клетки, подобные мячам для гольфа или пинг-понга, формируют более тонкие очертания. Когда клетки разных размеров сталкиваются, они могут создавать «пробку», которая и приводит к разрывам в полосах или линиях.
«Мы можем запечатлеть эти несовершенства и текстуры, просто придав этим клеткам размер», — объясняет Анкур Гупта. Новые симуляции успешно воспроизвели разрывы, вариации в толщине и зернистую текстуру, которые полностью соответствуют реальным узорам, наблюдаемым в природе.
Теперь исследователи планируют использовать более сложные взаимодействия между клетками и химическими агентами для дальнейшего повышения точности симуляций. Понимание этого механизма открывает широкие перспективы для практического применения.
Одним из направлений является материаловедение. Инженеры смогут разрабатывать материалы, способные изменять свой цвет в зависимости от окружающей среды, имитируя кожу хамелеона.
Другая потенциальная область применения — медицина. Полученные знания могут помочь в создании более эффективных методов доставки лекарств к определенным участкам тела.
«Мы черпаем вдохновение в несовершенной красоте природной системы и надеемся использовать эти несовершенства для создания новых функциональных возможностей в будущем», — заключает Гупта.