Ssylka

Светоуправляемые органические кристаллы: машинное обучение раскрывает новую эру эффективности

Исследовательская группа из Университета Васэда разработала машинно-обучающую методику для оптимизации выходной силы фотоактивируемых органических кристаллов, что позволило достичь максимального блокирующего усилия в 37,0 мН — это на 73 раза эффективнее традиционных методов. Эти результаты опубликованы в журнале Digital Discovery.
Светоуправляемые органические кристаллы: машинное обучение раскрывает новую эру эффективности
Изображение носит иллюстративный характер

Фотоактивируемые кристаллы способны преобразовывать световую энергию в механическое движение, служа основой для дистанционно управляемых приводов. Такие материалы особенно актуальны для робототехники, медицинских устройств (микрохирургия, доставка лекарств) и контактно-независимых систем управления. Ключевой характеристикой выступает блокирующая сила — максимальное усилие деформации при полной фиксации кристалла, однако повышение этого показателя требует учета множества факторов, включая молекулярную структуру, свойства кристалла и условия испытаний.

Коллектив под руководством доцента Тацуи Танигути из Центра науки о данных Университета Васэда, а также Казуки Исизаки и профессора Тору Асаи из департамента передовых наук и инженерии, реализовал двухэтапный машинно-обучающий подход. Для отбора ключевых молекулярных субструктур применялась регрессия LASSO (метод отбора и сжатия признаков), а для эффективного выбора экспериментальных условий — байесовская оптимизация. Исследования проводились на обширной библиотеке производных салицилдимина, где алгоритмы обеспечили целенаправленный отбор образцов для реальных измерений силы.

В результате блокирующая сила новых кристаллов превзошла ранее известные значения в 3,7 раза. При этом подбор оптимальных материалов и условий стал минимум в 73 раза эффективнее по сравнению с классическим перебором. По словам д-ра Танигути, «машинное обучение упрощает поиск оптимальных молекул и экспериментальных параметров», а также «открывает путь к более совершенным, миниатюрным устройствам — от носимой электроники до аэрокосмической техники и дистанционного экологического мониторинга».

Реализация подобных фотоактивируемых приводов открывает возможности для медицинских манипуляторов, робототехники, энергоэффективных систем и устройств для работы в замкнутых или чувствительных средах. Использование светового излучения как экологически чистого источника энергии способствует чистому производству и позволяет создавать миниатюрные решения для хирургии, доставки препаратов и носимой электроники.

Внедрение машинного обучения в разработку фотоуправляемых материалов не только ускоряет трансформацию лабораторных прототипов в реальные устройства, но и существенно приближает их коммерческое применение.


Новое на сайте

18586Криптовалютный червь: как десятки тысяч фейковых пакетов наводнили npm 18585Портативный звук JBL по рекордно низкой цене 18584Воин-крокодил триаса: находка в Бразилии связала континенты 18583Опиум как повседневность древнего Египта 18582Двойной удар по лекарственно-устойчивой малярии 18581Почему взрыв массивной звезды асимметричен в первые мгновения? 18580Почему самые удобные для поиска жизни звезды оказались наиболее враждебными? 18579Смертоносные вспышки красных карликов угрожают обитаемым мирам 18578Почему самый активный подводный вулкан тихого океана заставил ученых пересмотреть дату... 18577Вспышка на солнце сорвала запуск ракеты New Glenn к Марсу 18576Как фишинг-платформа Lighthouse заработала миллиард долларов и почему Google подала на... 18575Почему космический мусор стал реальной угрозой для пилотируемых миссий? 18574Зеленый свидетель: как мох помогает раскрывать преступления 18573Инфраструктурная гонка ИИ: Anthropic инвестирует $50 миллиардов для Claude 18572Кровь активных мышей омолодила мозг ленивых сородичей