Ssylka

Создание графа вычислений для глубокого обучения с нуля

В статье рассматривается реализация вычислительного графа на NumPy, аналогичного графу в PyTorch. Цель – глубже понять принципы работы нейронных сетей, отказавшись от использования готовых библиотек. Автор переходит от ручного вычисления градиентов к автоматическому, представляя вычисления в виде графа, где каждый узел хранит значение и локальные производные. Вводится класс Tensor, переопределяются основные математические операции (сложение, умножение, вычитание, деление, возведение в степень) для работы с графом.
Создание графа вычислений для глубокого обучения с нуля
Изображение носит иллюстративный характер

Ключевая идея – в каждом узле вычислять не только значение, но и производные. Для этого локальные градиенты хранятся в виде функций, которые могут применять chain rule для расчёта градиентов. Это позволяет автоматизировать вычисление градиентов для произвольных функций, построенных из базовых операций. Дополнительно реализуются матричное умножение, reshape, transpose, sum, softmax, и другие функции. Класс Tensor также позволяет отслеживать форму значений и предоставляет удобное представление значений.

После создания основных инструментов, реализуются слои Flatten, ReLU, Linear, и Conv2d, что позволяет строить несложные модели. Подробно рассматривается реализация свёрточного слоя на основе матричных операций и скользящих окон. В конечном итоге создаётся простая свёрточная сеть для обучения на MNIST, но возникают проблемы с обучением этой сети. В заключении показывается, что разработанный подход позволяет разобраться с каждой строчкой кода типичного примера обучения нейросети, и даже заметить, что import torch и torch.nn можно заменить на свою собственную библиотеку.


Новое на сайте

17902Lufthansa заменит 4000 административных сотрудников искусственным интеллектом 17901Каков истинный срок годности генетической информации? 17900Сможет ли закон догнать искусственный интеллект, предлагающий психотерапию? 17899Цепная реакция заражения листерией из-за одного поставщика 17898Холодный расчет: как современная наука изменила правила стирки 17897Деревянная начинка: массовый отзыв корн-догов из-за угрозы травм 17896Случайное открытие, спасшее 500 миллионов жизней 17895Мастерство мобильной съемки: полное руководство по камере iPhone 17894Что мог рассказать личный набор инструментов охотника эпохи палеолита? 17893Почему крупнейшая звездная колыбель млечного пути производит непропорционально много... 17892Обречены ли мы есть инжир с мертвыми осами внутри? 17891Почему AI-помощникам выгодно лгать, а не признавать незнание? 17890Является ли творчество искусственного интеллекта предсказуемым недостатком? 17889Как каланы цепляются за надежду? 17888Расшифрованный код древнего Египта