Создание графа вычислений для глубокого обучения с нуля

В статье рассматривается реализация вычислительного графа на NumPy, аналогичного графу в PyTorch. Цель – глубже понять принципы работы нейронных сетей, отказавшись от использования готовых библиотек. Автор переходит от ручного вычисления градиентов к автоматическому, представляя вычисления в виде графа, где каждый узел хранит значение и локальные производные. Вводится класс Tensor, переопределяются основные математические операции (сложение, умножение, вычитание, деление, возведение в степень) для работы с графом.
Создание графа вычислений для глубокого обучения с нуля
Изображение носит иллюстративный характер

Ключевая идея – в каждом узле вычислять не только значение, но и производные. Для этого локальные градиенты хранятся в виде функций, которые могут применять chain rule для расчёта градиентов. Это позволяет автоматизировать вычисление градиентов для произвольных функций, построенных из базовых операций. Дополнительно реализуются матричное умножение, reshape, transpose, sum, softmax, и другие функции. Класс Tensor также позволяет отслеживать форму значений и предоставляет удобное представление значений.

После создания основных инструментов, реализуются слои Flatten, ReLU, Linear, и Conv2d, что позволяет строить несложные модели. Подробно рассматривается реализация свёрточного слоя на основе матричных операций и скользящих окон. В конечном итоге создаётся простая свёрточная сеть для обучения на MNIST, но возникают проблемы с обучением этой сети. В заключении показывается, что разработанный подход позволяет разобраться с каждой строчкой кода типичного примера обучения нейросети, и даже заметить, что import torch и torch.nn можно заменить на свою собственную библиотеку.


Новое на сайте

19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии? 19152Культ священного манго и закат эпохи хунвейбинов в маоистском Китае 19151Готовы ли вы к эре коэффициента адаптивности, когда IQ и EQ больше не гарантируют успех? 19150Иранская группировка RedKitten применяет сгенерированный нейросетями код для кибершпионажа
Ссылка