Ssylka

Жидкий палладий-галлиевый катализатор ускоряет химию в 100 000 раз

Исследователи из Университета Монаша, Сиднейского университета и Университета RMIT разработали новаторский жидкий катализатор на основе палладия, растворенного в жидком галлии. Это открытие способно кардинально изменить химическое производство, сделав его значительно быстрее, безопаснее и экологичнее.
Жидкий палладий-галлиевый катализатор ускоряет химию в 100 000 раз
Изображение носит иллюстративный характер

Новый катализатор ускоряет химические реакции до 100 000 раз по сравнению с лучшими существующими твердотельными палладиевыми аналогами. Такая беспрецедентная эффективность открывает путь к революционным изменениям в производстве широкого спектра необходимых продуктов в различных отраслях промышленности.

Ключевым преимуществом является безопасность. Катализатор функционирует как истинный гетерогенный катализатор, находясь в отдельной фазе от реагентов и продуктов. Важно, что он не допускает выщелачивания ионов палладия, предотвращая загрязнение конечных продуктов, особенно фармацевтических препаратов, и связанные с этим риски для здоровья.

Ведущий исследователь, доцент Мд. Арифур Рахим из Департамента химической и биологической инженерии Университета Монаша, совместно со старшим соавтором доктором Эндрю Дж. Кристофферсоном из RMIT, первым автором Мд. Хасаном Аль Банна и старшим соавтором профессором Курошем Калантар-Заде, продемонстрировали уникальные свойства системы. Катализатор обладает способностью к самовосстановлению, что повышает его долговечность и экономическую привлекательность.

Механизм действия жидкого катализатора принципиально отличается от твердотельных аналогов. Он использует флюидоподобное поведение атомов палладия (Pd) в жидком галлии (Ga). Атомы палладия располагаются непосредственно под поверхностью жидкого металла и активируют находящиеся над ними атомы галлия. Химическая реакция протекает именно на этой активированной поверхности.

Эффективность катализатора была продемонстрирована на примере реакций кросс-сочетания Сузуки-Мияуры. Этот метод, удостоенный Нобелевской премии, используется для формирования связей углерод-углерод (C‒C) и имеет критическое значение в синтезе фармацевтических препаратов, агрохимикатов и в материаловедении.

Потенциальное влияние разработки охватывает множество секторов. В фармацевтике это позволит быстрее создавать жизненно важные лекарства. В агрохимии — разрабатывать более экологичные средства защиты растений. В производстве передовых материалов — эффективнее получать пластмассы, полимеры и компоненты для электроники. В целом, это шаг к более устойчивым промышленным процессам во всем мире.

Результаты этого прорывного исследования опубликованы в авторитетном научном журнале Science Advances. Разработка не только решает существующие проблемы в катализе, но и стимулирует дальнейшие инновации в дизайне каталитических систем для более зеленого и эффективного будущего.


Новое на сайте

18764Рекордный семичасовой космический взрыв не поддается объяснению существующими научными... 18763Зачем черепахам панцирь: для защиты или рытья нор, и все ли умеют в нем прятаться? 18762Почему критическая уязвимость шестилетней давности в роутерах Sierra Wireless угрожает... 18761Как подросток пережил атаку льва 6200 лет назад и почему его похоронили как опасного... 18760Почему случайные травмы превращаются в вечные рисунки на теле? 18759Почему Apple экстренно закрывает уязвимости, используемые для атак на конкретных людей? 18758Какие открытия от Марса до темной материи меняют научную картину мира? 18757Как ультрагорячая супер-Земля TOI-561 b сумела сохранить плотную атмосферу в... 18756Третий межзвездный странник 3I/ATLAS меняет цвет и проявляет аномальную активность 18754Раскопки виселицы XVI века и массовых захоронений казненных мятежников в Гренобле 18753Почему скрытая инфекция убила гигантского крокодила Кассиуса после 40 лет жизни в неволе? 18752Первая церемония Global Space Awards в Лондоне определила лидеров космической индустрии 18751Как новые фишинговые инструменты BlackForce, GhostFrame и гибридные атаки 2025 года... 18750Колоссальная «зеленая стена» Китая: полувековая битва с наступлением пустынь